These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 28816611)
1. Biosynthesis regulation of natamycin production from Streptomyces natalensis HDMNTE-01 enhanced by response surface methodology. Ge J; Wang C; Huang S; Du R; Liu K; Song G; Ping W Prep Biochem Biotechnol; 2017 Oct; 47(9):939-944. PubMed ID: 28816611 [TBL] [Abstract][Full Text] [Related]
2. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. Chen GQ; Lu FP; Du LX J Agric Food Chem; 2008 Jul; 56(13):5057-61. PubMed ID: 18537260 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. Farid MA; el-Enshasy HA; el-Diwany AI; el-Sayed el-S A J Basic Microbiol; 2000; 40(3):157-66. PubMed ID: 10957957 [TBL] [Abstract][Full Text] [Related]
4. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Shen W; Wang D; Wei L; Zhang Y Appl Microbiol Biotechnol; 2020 May; 104(10):4471-4482. PubMed ID: 32221688 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. Elsayed EA; Farid MA; El-Enshasy HA BMC Biotechnol; 2019 Jul; 19(1):46. PubMed ID: 31311527 [TBL] [Abstract][Full Text] [Related]
6. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. el-Enshasy HA; Farid MA; el-Sayed el-SA J Basic Microbiol; 2000; 40(5-6):333-42. PubMed ID: 11199493 [TBL] [Abstract][Full Text] [Related]
7. Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Wang D; Yuan J; Gu S; Shi Q Appl Microbiol Biotechnol; 2013 Jun; 97(12):5527-34. PubMed ID: 23463250 [TBL] [Abstract][Full Text] [Related]
8. Propanol addition improves natamycin biosynthesis of Streptomyces natalensis. Li M; Chen S; Li J; Ji Z Appl Biochem Biotechnol; 2014 Apr; 172(7):3424-32. PubMed ID: 24532463 [TBL] [Abstract][Full Text] [Related]
9. SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02. Wu H; Liu W; Dong D; Li J; Zhang D; Lu C J Ind Microbiol Biotechnol; 2014 Jan; 41(1):163-72. PubMed ID: 24174215 [TBL] [Abstract][Full Text] [Related]
10. Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites. Wu H; Li J; Dong D; Liu T; Zhang T; Zhang D; Liu W Enzyme Microb Technol; 2015 Dec; 81():80-7. PubMed ID: 26453475 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). Wang S; Liu F; Hou Z; Zong G; Zhu X; Ling P World J Microbiol Biotechnol; 2014 Apr; 30(4):1369-76. PubMed ID: 24272774 [TBL] [Abstract][Full Text] [Related]
12. [Advances in the biosynthesis of natamycin and its regulatory mechanisms]. Wang D; Shen W; Yuan J; Sun J; Wang M Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1107-1119. PubMed ID: 33973428 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. Medina A; Jiménez M; Mateo R; Magan N J Appl Microbiol; 2007 Dec; 103(6):2234-9. PubMed ID: 18045406 [TBL] [Abstract][Full Text] [Related]
14. Genome shuffling of Streptomyces gilvosporeus for improving natamycin production. Luo JM; Li JS; Liu D; Liu F; Wang YT; Song XR; Wang M J Agric Food Chem; 2012 Jun; 60(23):6026-36. PubMed ID: 22607399 [TBL] [Abstract][Full Text] [Related]
15. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology. Guo F; Zheng H; Cheng Y; Song S; Zheng Z; Jia S Lett Appl Microbiol; 2018 Feb; 66(2):124-131. PubMed ID: 29078007 [TBL] [Abstract][Full Text] [Related]
16. Improvement of Natamycin Production by Cholesterol Oxidase Overexpression in Streptomyces gilvosporeus. Wang M; Wang S; Zong G; Hou Z; Liu F; Liao DJ; Zhu X J Microbiol Biotechnol; 2016 Feb; 26(2):241-7. PubMed ID: 26502732 [TBL] [Abstract][Full Text] [Related]
17. Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor. Desai RP; Leaf T; Woo E; Licari P J Ind Microbiol Biotechnol; 2002 May; 28(5):297-301. PubMed ID: 11986935 [TBL] [Abstract][Full Text] [Related]
18. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. Zeng X; Miao W; Zeng H; Zhao K; Zhou Y; Zhang J; Zhao Q; Tursun D; Xu D; Li F Bioresour Technol; 2019 Feb; 273():377-385. PubMed ID: 30453252 [TBL] [Abstract][Full Text] [Related]
19. [Engineering the precursor supply pathway in Kong D; Li H; Li X; Xie Z; Liu H Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4630-4643. PubMed ID: 36593198 [TBL] [Abstract][Full Text] [Related]
20. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Aparicio JF; Barreales EG; Payero TD; Vicente CM; de Pedro A; Santos-Aberturas J Appl Microbiol Biotechnol; 2016 Jan; 100(1):61-78. PubMed ID: 26512010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]