These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 28816611)
21. Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology. Souagui Y; Tritsch D; Grosdemange-Billiard C; Kecha M J Mycol Med; 2015 Jun; 25(2):108-15. PubMed ID: 25703134 [TBL] [Abstract][Full Text] [Related]
22. Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces. Wang K; Chen XA; Li YQ; Mao XM Arch Microbiol; 2019 Dec; 201(10):1459-1464. PubMed ID: 31363787 [TBL] [Abstract][Full Text] [Related]
23. High-level production of melanin by a novel isolate of Streptomyces kathirae. Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X FEMS Microbiol Lett; 2014 Aug; 357(1):85-91. PubMed ID: 24910146 [TBL] [Abstract][Full Text] [Related]
24. Improving the production of natamycin in Shen W; Zhang Y; Wang D; Jiao S; Zhang L; Sun J Food Sci Biotechnol; 2024 Nov; 33(14):3323-3333. PubMed ID: 39328235 [TBL] [Abstract][Full Text] [Related]
25. Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes Tü57-1 using response surface methodology. Zhu CH; Lu FP; He YN; Zhang JK; Du LX J Ind Microbiol Biotechnol; 2007 Apr; 34(4):271-8. PubMed ID: 17186208 [TBL] [Abstract][Full Text] [Related]
26. Effects of cultivation conditions on the production of natamycin with Streptomyces gilvosporeus LK-196. Liang J; Xu Z; Liu T; Lin J; Cen P Enzyme Microb Technol; 2008 Jan; 42(2):145-50. PubMed ID: 22578864 [TBL] [Abstract][Full Text] [Related]
27. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization. Wang X; Tian X; Wu Y; Shen X; Yang S; Chen S Prep Biochem Biotechnol; 2018; 48(6):514-521. PubMed ID: 29939834 [TBL] [Abstract][Full Text] [Related]
28. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Wang D; Wei L; Zhang Y; Zhang M; Gu S Appl Microbiol Biotechnol; 2017 Sep; 101(17):6705-6712. PubMed ID: 28755262 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of a BarX homologue (SngA) as a pleiotropic regulator in Streptomyces natalensis. Lee KM; Lee CK; Choi SU; Park HR; Hwang YI Arch Microbiol; 2008 Jun; 189(6):569-77. PubMed ID: 18224301 [TBL] [Abstract][Full Text] [Related]
30. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Gao H; Liu M; Liu J; Dai H; Zhou X; Liu X; Zhuo Y; Zhang W; Zhang L Bioresour Technol; 2009 Sep; 100(17):4012-6. PubMed ID: 19356927 [TBL] [Abstract][Full Text] [Related]
31. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. Recio E; Colinas A; Rumbero A; Aparicio JF; Martín JF J Biol Chem; 2004 Oct; 279(40):41586-93. PubMed ID: 15231842 [TBL] [Abstract][Full Text] [Related]
32. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Mendes MV; Recio E; Antón N; Guerra SM; Santos-Aberturas J; Martín JF; Aparicio JF Chem Biol; 2007 Mar; 14(3):279-90. PubMed ID: 17379143 [TBL] [Abstract][Full Text] [Related]
33. Cloning and in vivo functional analysis by disruption of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces natalensis. Lee KM; Lee CK; Choi SU; Park HR; Kitani S; Nihira T; Hwang YI Arch Microbiol; 2005 Dec; 184(4):249-57. PubMed ID: 16228193 [TBL] [Abstract][Full Text] [Related]
34. The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Mendes MV; Tunca S; Antón N; Recio E; Sola-Landa A; Aparicio JF; Martín JF Metab Eng; 2007 Mar; 9(2):217-27. PubMed ID: 17142079 [TBL] [Abstract][Full Text] [Related]
35. Improvement of microbial strain and fermentation process of rapamycin biosynthesis. Baby Rani P; Battula SK; Rao AK; Gunja M; Narasu ML Prep Biochem Biotechnol; 2013; 43(6):539-50. PubMed ID: 23742086 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Mendes MV; Antón N; Martín JF; Aparicio JF Biochem J; 2005 Feb; 386(Pt 1):57-62. PubMed ID: 15228385 [TBL] [Abstract][Full Text] [Related]
37. Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Recio E; Aparicio JF; Rumbero Á; Martín JF Microbiology (Reading); 2006 Oct; 152(Pt 10):3147-3156. PubMed ID: 17005993 [TBL] [Abstract][Full Text] [Related]
38. Optimisation of nutritional requirements and process control parameters for the production of HA-2-91, a new tetraene polyene antibiotic. Gupte TE; Naik SR Hindustan Antibiot Bull; 1998; 40(1-4):5-13. PubMed ID: 16961200 [TBL] [Abstract][Full Text] [Related]
39. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Liu SP; Yuan PH; Wang YY; Liu XF; Zhou ZX; Bu QT; Yu P; Jiang H; Li YQ Microbiol Res; 2015 Apr; 173():25-33. PubMed ID: 25801968 [TBL] [Abstract][Full Text] [Related]
40. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Liu SP; Yu P; Yuan PH; Zhou ZX; Bu QT; Mao XM; Li YQ Appl Microbiol Biotechnol; 2015 Mar; 99(6):2715-26. PubMed ID: 25724582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]