These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28817075)
1. Discrimination of Transgenic Maize Kernel Using NIR Hyperspectral Imaging and Multivariate Data Analysis. Feng X; Zhao Y; Zhang C; Cheng P; He Y Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817075 [TBL] [Abstract][Full Text] [Related]
2. Classification of oat and groat kernels using NIR hyperspectral imaging. Serranti S; Cesare D; Marini F; Bonifazi G Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388 [TBL] [Abstract][Full Text] [Related]
3. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Williams P; Geladi P; Fox G; Manley M Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104 [TBL] [Abstract][Full Text] [Related]
4. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging. Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging. Wang W; Heitschmidt GW; Windham WR; Feldner P; Ni X; Chu X J Food Sci; 2015 Jan; 80(1):M116-22. PubMed ID: 25495222 [TBL] [Abstract][Full Text] [Related]
7. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Zhang X; Liu F; He Y; Li X Sensors (Basel); 2012 Dec; 12(12):17234-46. PubMed ID: 23235456 [TBL] [Abstract][Full Text] [Related]
8. [Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region]. Tian X; Huang WQ; Li JB; Fan SX; Zhang BH Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3237-42. PubMed ID: 30246759 [TBL] [Abstract][Full Text] [Related]
9. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Yu K; Fang S; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118917. PubMed ID: 32949945 [TBL] [Abstract][Full Text] [Related]
11. A Rapid and Nondestructive Method for Simultaneous Determination of Aflatoxigenic Fungus and Aflatoxin Contamination on Corn Kernels. Tao F; Yao H; Zhu F; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D J Agric Food Chem; 2019 May; 67(18):5230-5239. PubMed ID: 30986348 [TBL] [Abstract][Full Text] [Related]
12. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging. Feng X; Peng C; Chen Y; Liu X; Feng X; He Y Sci Rep; 2017 Nov; 7(1):15934. PubMed ID: 29162881 [TBL] [Abstract][Full Text] [Related]
13. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Zhao HT; Feng YZ; Chen W; Jia GF Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565 [TBL] [Abstract][Full Text] [Related]
14. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. Zhou Q; Huang W; Liang D; Tian X Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281 [TBL] [Abstract][Full Text] [Related]
15. Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging. Feng X; Chen H; Chen Y; Zhang C; Liu X; Weng H; Xiao S; Nie P; He Y Sci Total Environ; 2019 Apr; 659():1021-1031. PubMed ID: 31096318 [TBL] [Abstract][Full Text] [Related]
16. Rapid and nondestructive detection of marine fishmeal adulteration by hyperspectral imaging and machine learning. Kong D; Sun D; Qiu R; Zhang W; Liu Y; He Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():120990. PubMed ID: 35183858 [TBL] [Abstract][Full Text] [Related]
17. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Kong W; Zhang C; Liu F; Nie P; He Y Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260 [TBL] [Abstract][Full Text] [Related]
18. Macro-micro exploration on dynamic interaction between aflatoxigenic Aspergillus flavus and maize kernels using Vis/NIR hyperspectral imaging and SEM technology. Lu Y; Jia B; Yoon SC; Ni X; Zhuang H; Guo B; Gold SE; Fountain JC; Glenn AE; Lawrence KC; Zhang F; Wang W; Lu J; Wei C; Jiang H; Luo J Int J Food Microbiol; 2024 May; 416():110661. PubMed ID: 38457888 [TBL] [Abstract][Full Text] [Related]
19. Detection of Kong W; Zhang C; Cao F; Liu F; Luo S; Tang Y; He Y Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857572 [TBL] [Abstract][Full Text] [Related]
20. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. Manley M; Williams P; Nilsson D; Geladi P J Agric Food Chem; 2009 Oct; 57(19):8761-9. PubMed ID: 19728712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]