These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28817215)

  • 1. Unexpected collective larval dispersal but little support for sweepstakes reproductive success in the highly dispersive brooding mollusc Crepidula fornicata.
    Riquet F; Comtet T; Broquet T; Viard F
    Mol Ecol; 2017 Oct; 26(20):5467-5483. PubMed ID: 28817215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success.
    Pusack TJ; Christie MR; Johnson DW; Stallings CD; Hixon MA
    Mol Ecol; 2014 Jul; 23(14):3396-408. PubMed ID: 24917250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of marine kin structure: effects of dispersal, larval cohesion, and variable reproductive success.
    D'Aloia CC; Neubert MG
    Ecology; 2018 Oct; 99(10):2374-2384. PubMed ID: 30080237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?
    Le Cam S; Pechenik JA; Cagnon M; Viard F
    J Hered; 2009; 100(4):455-64. PubMed ID: 19307296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current shifts and kin aggregation explain genetic patchiness in fish recruits.
    Selkoe KA; Gaines SD; Caselle JE; Warner RR
    Ecology; 2006 Dec; 87(12):3082-94. PubMed ID: 17249233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial connectivity in an adult-sedentary reef fish with extended pelagic larval phase.
    Antoni L; Saillant E
    Mol Ecol; 2017 Oct; 26(19):4955-4965. PubMed ID: 28746775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking larvae with molecular markers reveals high relatedness and early seasonal recruitment success in a partially spawning marine bivalve.
    St-Onge P; Tremblay R; Sévigny JM
    Oecologia; 2015 Jul; 178(3):733-46. PubMed ID: 25715923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals.
    Miller KJ; Ayre DJ
    J Anim Ecol; 2008 Jul; 77(4):713-24. PubMed ID: 18422556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gregariousness and protandry promote reproductive insurance in the invasive gastropod Crepidula fornicata: evidence from assignment of larval paternity.
    Dupont L; Richard J; Paulet YM; Thouzeau G; Viard F
    Mol Ecol; 2006 Sep; 15(10):3009-21. PubMed ID: 16911217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea.
    Froukh T; Kochzius M
    Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.
    Ellingson RA; Krug PJ
    Evolution; 2016 Jan; 70(1):18-37. PubMed ID: 26635309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development.
    Modica MV; Russini V; Fassio G; Oliverio M
    Mar Environ Res; 2017 Jun; 127():92-101. PubMed ID: 28413103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic drift and collective dispersal can result in chaotic genetic patchiness.
    Broquet T; Viard F; Yearsley JM
    Evolution; 2013 Jun; 67(6):1660-75. PubMed ID: 23730760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers.
    Lee HJ; Boulding EG
    Mol Ecol; 2009 May; 18(10):2165-84. PubMed ID: 19344352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish.
    Christie MR; Johnson DW; Stallings CD; Hixon MA
    Mol Ecol; 2010 Mar; 19(5):1042-57. PubMed ID: 20089121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia.
    Ayre DJ; Hughes TP
    Evolution; 2000 Oct; 54(5):1590-605. PubMed ID: 11108587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal genetic homogeneity among shore crab (Carcinus maenas) larval events supplied to an estuarine system on the Portuguese northwest coast.
    Domingues CP; Creer S; Taylor MI; Queiroga H; Carvalho GR
    Heredity (Edinb); 2011 May; 106(5):832-40. PubMed ID: 20959862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.
    Sunday JM; Popovic I; Palen WJ; Foreman MG; Hart MW
    Mol Ecol; 2014 Oct; 23(20):5036-47. PubMed ID: 25231198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations.
    Schunter C; Pascual M; Raventos N; Garriga J; Garza JC; Bartumeus F; Macpherson E
    Sci Rep; 2019 Jul; 9(1):10796. PubMed ID: 31346216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.