These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28817268)

  • 21. Effect of natural organic matter on aggregation behavior of C60 fullerene in water.
    Mashayekhi H; Ghosh S; Du P; Xing B
    J Colloid Interface Sci; 2012 May; 374(1):111-7. PubMed ID: 22365633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heteroaggregation of different surface-modified polystyrene nanoparticles with model natural colloids.
    Yu SJ; Li QC; Shan WY; Hao ZN; Li P; Liu JF
    Sci Total Environ; 2021 Aug; 784():147190. PubMed ID: 33895519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1.
    Lee S; Kim DH; Kim KW
    Chemosphere; 2018 Mar; 194():515-522. PubMed ID: 29241125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles.
    Afshinnia K; Marrone B; Baalousha M
    Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling.
    Clavier A; Praetorius A; Stoll S
    Sci Total Environ; 2019 Feb; 650(Pt 1):530-540. PubMed ID: 30205343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments.
    Yang Y; Hou J; Wang P; Wang C; Miao L; Ao Y; Wang X; Lv B; You G; Liu Z; Shao Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():89-96. PubMed ID: 29031879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2014 Aug; 48(16):9382-90. PubMed ID: 25026416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechanistic study of TiO
    Qiu TA; Meyer BM; Christenson KG; Klaper RD; Haynes CL
    Chemosphere; 2017 Feb; 168():1158-1168. PubMed ID: 27823777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.
    Jiang C; Aiken GR; Hsu-Kim H
    Environ Sci Technol; 2015 Oct; 49(19):11476-84. PubMed ID: 26355264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of organic molecules on the aggregation of TiO
    Danielsson K; Gallego-Urrea JA; Hassellov M; Gustafsson S; Jonsson CM
    J Nanopart Res; 2017; 19(4):133. PubMed ID: 28424566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.
    Yoshikawa T; Zuerbig V; Gao F; Hoffmann R; Nebel CE; Ambacher O; Lebedev V
    Langmuir; 2015 May; 31(19):5319-25. PubMed ID: 25936368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Surface Ligand Molecular Structure on Phospholipid Membrane Disruption by Cationic Nanoparticles.
    Zhang Y; Dahal U; Feng ZV; Rosenzweig Z; Cui Q; Hamers RJ
    Langmuir; 2021 Jun; 37(24):7600-7610. PubMed ID: 34115507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter.
    Slomberg DL; Ollivier P; Miche H; Angeletti B; Bruchet A; Philibert M; Brant J; Labille J
    Sci Total Environ; 2019 Mar; 656():338-346. PubMed ID: 30513425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Mechanistic Exploration of Natural Organic Matter Aggregation and Surface Complexation in Smectite Mesopores.
    Loganathan N; Ferguson BO; Arey B; Argersinger HE; Bowers GM
    J Phys Chem A; 2020 Nov; 124(47):9832-9843. PubMed ID: 33196198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unbound Natural Organic Matter Competes with Nanoparticles for Internalization Receptors During Cell Uptake.
    Zhao YT; Yan S; Huang B; Yang L; Ding HM; Wang P; Miao AJ
    Environ Sci Technol; 2020 Dec; 54(23):15215-15224. PubMed ID: 33169997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between rotavirus and Suwannee River organic matter: aggregation, deposition, and adhesion force measurement.
    Gutierrez L; Nguyen TH
    Environ Sci Technol; 2012 Aug; 46(16):8705-13. PubMed ID: 22834686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid.
    Barbero F; Mayall C; Drobne D; Saiz-Poseu J; Bastús NG; Puntes V
    Sci Total Environ; 2021 May; 768():144792. PubMed ID: 33736322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.
    Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS
    Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.