These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28817383)

  • 1. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors.
    Brousmiche S; Souris K; de Xivry JO; Lee JA; Macq B; Seco J
    Phys Med Biol; 2017 Oct; 62(21):8226-8245. PubMed ID: 28817383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of CT image noise on proton range calculation in radiotherapy planning.
    Chvetsov AV; Paige SL
    Phys Med Biol; 2010 Mar; 55(6):N141-9. PubMed ID: 20182006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT.
    Collins-Fekete CA; Brousmiche S; Hansen DC; Beaulieu L; Seco J
    Phys Med Biol; 2017 Aug; 62(17):6836-6852. PubMed ID: 28657550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regularised patient-specific stopping power calibration for proton therapy planning based on proton radiographic images.
    Krah N; Patera V; Rit S; Schiavi A; Rinaldi I
    Phys Med Biol; 2019 Mar; 64(6):065008. PubMed ID: 30708365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams.
    Arbor N; Dauvergne D; Dedes G; Létang JM; Parodi K; Quiñones CT; Testa E; Rit S
    Phys Med Biol; 2015 Oct; 60(19):7585-99. PubMed ID: 26378805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of beam-hardening corrections on proton relative stopping power estimates from single- and dual-energy CT.
    Chacko MS; Wu D; Grewal HS; Sonnad JR
    J Appl Clin Med Phys; 2022 Sep; 23(9):e13711. PubMed ID: 35816460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography.
    Doolan PJ; Testa M; Sharp G; Bentefour EH; Royle G; Lu HM
    Phys Med Biol; 2015 Mar; 60(5):1901-17. PubMed ID: 25668437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.
    España S; Paganetti H
    Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of dual-energy CT to reduce proton beam range uncertainties.
    Bär E; Lalonde A; Royle G; Lu HM; Bouchard H
    Med Phys; 2017 Jun; 44(6):2332-2344. PubMed ID: 28295434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of proton stopping power estimation of silicone breast implants with single and dual-energy CT calibration techniques.
    Chacko MS; Grewal HS; Wu D; Sonnad JR
    J Appl Clin Med Phys; 2021 Sep; 22(9):159-170. PubMed ID: 34275175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. openPR - A computational tool for CT conversion assessment with proton radiography.
    Deffet S; Cohilis M; Souris K; Salvo K; Depuydt T; Sterpin E; Macq B
    Med Phys; 2021 Jan; 48(1):387-396. PubMed ID: 33125725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust empirical parametrization of proton stopping power using dual energy CT.
    Taasti VT; Petersen JB; Muren LP; Thygesen J; Hansen DC
    Med Phys; 2016 Oct; 43(10):5547. PubMed ID: 27782721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method.
    Gomà C; Almeida IP; Verhaegen F
    Phys Med Biol; 2018 Nov; 63(23):235011. PubMed ID: 30474618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the proton range accuracy and optimization of CT calibration curves utilizing range probing.
    Meijers A; Free J; Wagenaar D; Deffet S; Knopf AC; Langendijk JA; Both S
    Phys Med Biol; 2020 Feb; 65(3):03NT02. PubMed ID: 31896099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Carbon Fiber and Titanium Surgical Implants for Proton and Photon Therapy.
    Depauw N; Pursley J; Lozano-Calderon SA; Patel CG
    Pract Radiat Oncol; 2023; 13(3):256-262. PubMed ID: 36738918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Registration of pencil beam proton radiography data with X-ray CT.
    Deffet S; Macq B; Righetto R; Vander Stappen F; Farace P
    Med Phys; 2017 Oct; 44(10):5393-5401. PubMed ID: 28771749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy.
    Barnes S; McAuley G; Slater J; Wroe A
    Med Phys; 2013 Apr; 40(4):041701. PubMed ID: 23556871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton CT on biological phantoms for x-ray CT calibration in proton treatment planning.
    Fogazzi E; Bruzzi M; D'Amato E; Farace P; Righetto R; Scaringella M; Scarpa M; Tommasino F; Civinini C
    Phys Med Biol; 2024 Jun; 69(13):. PubMed ID: 38862001
    [No Abstract]   [Full Text] [Related]  

  • 20. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power.
    Schaffner B; Pedroni E
    Phys Med Biol; 1998 Jun; 43(6):1579-92. PubMed ID: 9651027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.