BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28817383)

  • 1. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors.
    Brousmiche S; Souris K; de Xivry JO; Lee JA; Macq B; Seco J
    Phys Med Biol; 2017 Oct; 62(21):8226-8245. PubMed ID: 28817383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of CT image noise on proton range calculation in radiotherapy planning.
    Chvetsov AV; Paige SL
    Phys Med Biol; 2010 Mar; 55(6):N141-9. PubMed ID: 20182006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT.
    Collins-Fekete CA; Brousmiche S; Hansen DC; Beaulieu L; Seco J
    Phys Med Biol; 2017 Aug; 62(17):6836-6852. PubMed ID: 28657550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regularised patient-specific stopping power calibration for proton therapy planning based on proton radiographic images.
    Krah N; Patera V; Rit S; Schiavi A; Rinaldi I
    Phys Med Biol; 2019 Mar; 64(6):065008. PubMed ID: 30708365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams.
    Arbor N; Dauvergne D; Dedes G; Létang JM; Parodi K; Quiñones CT; Testa E; Rit S
    Phys Med Biol; 2015 Oct; 60(19):7585-99. PubMed ID: 26378805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of beam-hardening corrections on proton relative stopping power estimates from single- and dual-energy CT.
    Chacko MS; Wu D; Grewal HS; Sonnad JR
    J Appl Clin Med Phys; 2022 Sep; 23(9):e13711. PubMed ID: 35816460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography.
    Doolan PJ; Testa M; Sharp G; Bentefour EH; Royle G; Lu HM
    Phys Med Biol; 2015 Mar; 60(5):1901-17. PubMed ID: 25668437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.
    España S; Paganetti H
    Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of dual-energy CT to reduce proton beam range uncertainties.
    Bär E; Lalonde A; Royle G; Lu HM; Bouchard H
    Med Phys; 2017 Jun; 44(6):2332-2344. PubMed ID: 28295434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of proton stopping power estimation of silicone breast implants with single and dual-energy CT calibration techniques.
    Chacko MS; Grewal HS; Wu D; Sonnad JR
    J Appl Clin Med Phys; 2021 Sep; 22(9):159-170. PubMed ID: 34275175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. openPR - A computational tool for CT conversion assessment with proton radiography.
    Deffet S; Cohilis M; Souris K; Salvo K; Depuydt T; Sterpin E; Macq B
    Med Phys; 2021 Jan; 48(1):387-396. PubMed ID: 33125725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust empirical parametrization of proton stopping power using dual energy CT.
    Taasti VT; Petersen JB; Muren LP; Thygesen J; Hansen DC
    Med Phys; 2016 Oct; 43(10):5547. PubMed ID: 27782721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method.
    Gomà C; Almeida IP; Verhaegen F
    Phys Med Biol; 2018 Nov; 63(23):235011. PubMed ID: 30474618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the proton range accuracy and optimization of CT calibration curves utilizing range probing.
    Meijers A; Free J; Wagenaar D; Deffet S; Knopf AC; Langendijk JA; Both S
    Phys Med Biol; 2020 Feb; 65(3):03NT02. PubMed ID: 31896099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Carbon Fiber and Titanium Surgical Implants for Proton and Photon Therapy.
    Depauw N; Pursley J; Lozano-Calderon SA; Patel CG
    Pract Radiat Oncol; 2023; 13(3):256-262. PubMed ID: 36738918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Registration of pencil beam proton radiography data with X-ray CT.
    Deffet S; Macq B; Righetto R; Vander Stappen F; Farace P
    Med Phys; 2017 Oct; 44(10):5393-5401. PubMed ID: 28771749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy.
    Barnes S; McAuley G; Slater J; Wroe A
    Med Phys; 2013 Apr; 40(4):041701. PubMed ID: 23556871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton CT on biological phantoms for x-ray CT calibration in proton treatment planning.
    Fogazzi E; Bruzzi M; D'Amato E; Farace P; Righetto R; Scaringella M; Scarpa M; Tommasino F; Civinini C
    Phys Med Biol; 2024 Jun; 69(13):. PubMed ID: 38862001
    [No Abstract]   [Full Text] [Related]  

  • 20. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power.
    Schaffner B; Pedroni E
    Phys Med Biol; 1998 Jun; 43(6):1579-92. PubMed ID: 9651027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.