These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28817602)

  • 1. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.
    Regad L; Chéron JB; Triki D; Senac C; Flatters D; Camproux AC
    PLoS One; 2017; 12(8):e0182972. PubMed ID: 28817602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining protein loops using a structural alphabet and statistical exceptionality.
    Regad L; Martin J; Nuel G; Camproux AC
    BMC Bioinformatics; 2010 Feb; 11():75. PubMed ID: 20132552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the structural variability of HIV-2 protease upon the binding of diverse ligands using a structural alphabet approach.
    Triki D; Fartek S; Visseaux B; Descamps D; Camproux AC; Regad L
    J Biomol Struct Dyn; 2019 Oct; 37(17):4658-4670. PubMed ID: 30593258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SA-Search: a web tool for protein structure mining based on a Structural Alphabet.
    Guyon F; Camproux AC; Hochez J; Tufféry P
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W545-8. PubMed ID: 15215446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.
    Regad L; Saladin A; Maupetit J; Geneix C; Camproux AC
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W203-9. PubMed ID: 21665924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet.
    Triki D; Cano Contreras ME; Flatters D; Visseaux B; Descamps D; Camproux AC; Regad L
    Sci Rep; 2018 Jan; 8(1):710. PubMed ID: 29335428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting protein intrinsic flexibility in drug design.
    Lukman S; Verma CS; Fuentes G
    Adv Exp Med Biol; 2014; 805():245-69. PubMed ID: 24446365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAFlex: A structural alphabet extension to integrate protein structural flexibility and missing data information.
    Allam I; Flatters D; Caumes G; Regad L; Delos V; Nuel G; Camproux AC
    PLoS One; 2018; 13(7):e0198854. PubMed ID: 29975698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring experimental sources of multiple protein conformations in structure-based drug design.
    Damm KL; Carlson HA
    J Am Chem Soc; 2007 Jul; 129(26):8225-35. PubMed ID: 17555316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDBFlex: exploring flexibility in protein structures.
    Hrabe T; Li Z; Sedova M; Rotkiewicz P; Jaroszewski L; Godzik A
    Nucleic Acids Res; 2016 Jan; 44(D1):D423-8. PubMed ID: 26615193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of structural stress on the flexibility and adaptability of HIV-1 protease.
    Oehme DP; Wilson DJ; Brownlee RT
    J Chem Inf Model; 2011 May; 51(5):1064-73. PubMed ID: 21500830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet.
    Tyagi M; Sharma P; Swamy CS; Cadet F; Srinivasan N; de Brevern AG; Offmann B
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W119-23. PubMed ID: 16844973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting structural flexibility in HIV-1 protease inhibitor binding.
    Hornak V; Simmerling C
    Drug Discov Today; 2007 Feb; 12(3-4):132-8. PubMed ID: 17275733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining the protein data bank to differentiate error from structural variation in clustered static structures: an examination of HIV protease.
    Venkatakrishnan B; Palii ML; Agbandje-McKenna M; McKenna R
    Viruses; 2012 Mar; 4(3):348-62. PubMed ID: 22590675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-PP: A Tool for Discovering Conserved Three-Dimensional Protein Patterns.
    Valdés-Jiménez A; Larriba-Pey JL; Núñez-Vivanco G; Reyes-Parada M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PredyFlexy: flexibility and local structure prediction from sequence.
    de Brevern AG; Bornot A; Craveur P; Etchebest C; Gelly JC
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W317-22. PubMed ID: 22689641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.