These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 28817716)
1. Endothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels. Yin DD; Wang QC; Zhou X; Li Y PLoS One; 2017; 12(8):e0183124. PubMed ID: 28817716 [TBL] [Abstract][Full Text] [Related]
2. Impaired EDHF-mediated vasodilation and function of endothelial Ca-activated K channels in uremic rats. Köhler R; Eichler I; Schönfelder H; Grgic I; Heinau P; Si H; Hoyer J Kidney Int; 2005 Jun; 67(6):2280-7. PubMed ID: 15882269 [TBL] [Abstract][Full Text] [Related]
3. Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats. Mori Y; Ohyanagi M; Koida S; Ueda A; Ishiko K; Iwasaki T Hypertens Res; 2006 Mar; 29(3):187-95. PubMed ID: 16755154 [TBL] [Abstract][Full Text] [Related]
4. The impaired renal vasodilator response attributed to endothelium-derived hyperpolarizing factor in streptozotocin--induced diabetic rats is restored by 5-methyltetrahydrofolate. De Vriese AS; Van de Voorde J; Blom HJ; Vanhoutte PM; Verbeke M; Lameire NH Diabetologia; 2000 Sep; 43(9):1116-25. PubMed ID: 11043857 [TBL] [Abstract][Full Text] [Related]
5. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. Stankevicius E; Dalsgaard T; Kroigaard C; Beck L; Boedtkjer E; Misfeldt MW; Nielsen G; Schjorring O; Hughes A; Simonsen U J Pharmacol Exp Ther; 2011 Dec; 339(3):842-50. PubMed ID: 21880870 [TBL] [Abstract][Full Text] [Related]
6. Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Leo CH; Hart JL; Woodman OL Br J Pharmacol; 2011 Jan; 162(2):365-77. PubMed ID: 20840539 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. Lagaud GJ; Skarsgard PL; Laher I; van Breemen C J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599 [TBL] [Abstract][Full Text] [Related]
8. Two distinct pathways account for EDHF-dependent dilatation in the gracilis artery of dyslipidaemic hApoB+/+ mice. Krummen S; Falck JR; Thorin E Br J Pharmacol; 2005 May; 145(2):264-70. PubMed ID: 15765099 [TBL] [Abstract][Full Text] [Related]
9. Flow-evoked vasodilation is blunted in penile arteries from Zucker diabetic fatty rats. Schjørring O; Kun A; Flyvbjerg A; Kirkeby HJ; Jensen JB; Simonsen U J Sex Med; 2012 Jul; 9(7):1789-800. PubMed ID: 22548917 [TBL] [Abstract][Full Text] [Related]
10. Differential participation of calcium-activated potassium channel in endothelium-dependent hyperpolarization-type relaxation in superior mesenteric arteries of spontaneously hypertensive rats. Ando M; Matsumoto T; Kobayashi S; Iguchi M; Taguchi K; Kobayashi T Can J Physiol Pharmacol; 2018 Aug; 96(8):839-844. PubMed ID: 29558628 [TBL] [Abstract][Full Text] [Related]
11. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats. Muñoz M; Sánchez A; Pilar Martínez M; Benedito S; López-Oliva ME; García-Sacristán A; Hernández M; Prieto D Free Radic Biol Med; 2015 Jul; 84():77-90. PubMed ID: 25841778 [TBL] [Abstract][Full Text] [Related]
12. Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity. Muñoz M; López-Oliva E; Pinilla E; Rodríguez C; Martínez MP; Contreras C; Gómez A; Benedito S; Sáenz-Medina J; Rivera L; Prieto D Biochem Pharmacol; 2022 Jan; 195():114850. PubMed ID: 34822809 [TBL] [Abstract][Full Text] [Related]
13. Distinct role of nitric oxide and endothelium-derived hyperpolarizing factor in renal microcirculation. Studies in the isolated perfused hydronephrotic kidney. Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Kanda T; Homma K; Saruta T Nephron; 2002 Dec; 92(4):905-13. PubMed ID: 12399638 [TBL] [Abstract][Full Text] [Related]
14. Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels. Bolz SS; de Wit C; Pohl U Br J Pharmacol; 1999 Sep; 128(1):124-34. PubMed ID: 10498843 [TBL] [Abstract][Full Text] [Related]
15. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Cheng Z; Shen X; Jiang X; Shan H; Cimini M; Fang P; Ji Y; Park JY; Drosatos K; Yang X; Kevil CG; Kishore R; Wang H Redox Biol; 2018 Jun; 16():215-225. PubMed ID: 29524844 [TBL] [Abstract][Full Text] [Related]
16. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. Clark SG; Fuchs LC J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861 [TBL] [Abstract][Full Text] [Related]
17. Histamine-induced vasodilation in the perfused kidney of STZ-diabetic rats: role of EDNO and EDHF. Yousif MH Pharmacol Res; 2005 Jun; 51(6):515-21. PubMed ID: 15829431 [TBL] [Abstract][Full Text] [Related]
18. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Marrelli SP; Eckmann MS; Hunte MS Am J Physiol Heart Circ Physiol; 2003 Oct; 285(4):H1590-9. PubMed ID: 12805022 [TBL] [Abstract][Full Text] [Related]