These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28817771)

  • 1. Ice-Templated and Cross-Linked Amyloid Fibril Aerogel Scaffolds for Cell Growth.
    Nyström G; Fong WK; Mezzenga R
    Biomacromolecules; 2017 Sep; 18(9):2858-2865. PubMed ID: 28817771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.
    Dharunya G; Duraipandy N; Lakra R; Korapatti PS; Jayavel R; Kiran MS
    Biomed Mater; 2016 Aug; 11(4):045011. PubMed ID: 27509047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils.
    Erlandsson J; Françon H; Marais A; Granberg H; Wågberg L
    Biomacromolecules; 2019 Feb; 20(2):728-737. PubMed ID: 30394086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide-reinforced amyloid fibril hydrogels and aerogels.
    Usuelli M; Germerdonk T; Cao Y; Peydayesh M; Bagnani M; Handschin S; Nyström G; Mezzenga R
    Nanoscale; 2021 Aug; 13(29):12534-12545. PubMed ID: 34263899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water.
    Peydayesh M; Suter MK; Bolisetty S; Boulos S; Handschin S; Nyström L; Mezzenga R
    Adv Mater; 2020 Mar; 32(12):e1907932. PubMed ID: 32026524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly.
    Nieto-Suárez M; López-Quintela MA; Lazzari M
    Carbohydr Polym; 2016 May; 141():175-83. PubMed ID: 26877010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid fibril-directed synthesis of silica core-shell nanofilaments, gels, and aerogels.
    Cao Y; Bolisetty S; Wolfisberg G; Adamcik J; Mezzenga R
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4012-4017. PubMed ID: 30782823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation.
    Zhou W; Stukel JM; Cebull HL; Willits RK
    Macromol Biosci; 2016 Apr; 16(4):535-44. PubMed ID: 26726886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels.
    How SC; Lin TH; Chang CC; Wang SS
    Int J Biol Macromol; 2021 Aug; 184():79-91. PubMed ID: 34097969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid Fibril Templated MOF Aerogels for Water Purification.
    Jia X; Peydayesh M; Huang Q; Mezzenga R
    Small; 2022 Jan; 18(4):e2105502. PubMed ID: 34816591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan scaffolds via diglycidyl ether crosslinking: toward improvements in composition and performance.
    La Gatta A; Schiraldi C; Papa A; D'Agostino A; Cammarota M; De Rosa A; De Rosa M
    Carbohydr Polym; 2013 Jul; 96(2):536-44. PubMed ID: 23768598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses.
    Liao SW; Yu TB; Guan Z
    J Am Chem Soc; 2009 Dec; 131(48):17638-46. PubMed ID: 19908839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.