These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28817774)

  • 21. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite.
    Wang XS; Huang J; Hu HQ; Wang J; Qin Y
    J Hazard Mater; 2007 Apr; 142(1-2):468-76. PubMed ID: 17010513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrated Silicate Layer Formation on Mica-Type Crystals.
    Sugiura M; Sueyoshi M; Seike R; Hayashi T; Okada T
    Langmuir; 2020 May; 36(18):4933-4941. PubMed ID: 32330044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of copper and zinc from aqueous solutions by using natural clay.
    Veli S; Alyüz B
    J Hazard Mater; 2007 Oct; 149(1):226-33. PubMed ID: 17560022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin.
    Demirbas A; Pehlivan E; Gode F; Altun T; Arslan G
    J Colloid Interface Sci; 2005 Feb; 282(1):20-5. PubMed ID: 15576076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination.
    Boyaci E; Eroğlu AE; Shahwan T
    Talanta; 2010 Jan; 80(3):1452-60. PubMed ID: 20006113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the sorption and desorption characteristics of Zn(II) on the surface soils of nuclear power plant sites in India using a radiotracer technique.
    Dahiya S; Shanwal AV; Hegde AG
    Chemosphere; 2005 Sep; 60(9):1253-61. PubMed ID: 16018896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of nickel ions from water by multi-walled carbon nanotubes.
    Kandah MI; Meunier JL
    J Hazard Mater; 2007 Jul; 146(1-2):283-8. PubMed ID: 17196328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins.
    Alyüz B; Veli S
    J Hazard Mater; 2009 Aug; 167(1-3):482-8. PubMed ID: 19201087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies.
    Lv L; He J; Wei M; Evans DG; Duan X
    Water Res; 2006 Feb; 40(4):735-43. PubMed ID: 16426658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.
    Ghazy SE; Mahmoud IA; Ragab AH
    Environ Technol; 2006 Jan; 27(1):53-61. PubMed ID: 16457175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MCM-41 and Na-magadiite silicates internal voids probed by pyrene fluorescence spectroscopy.
    Sena DM; Pastore HO; Pessine FB
    Phys Chem Chem Phys; 2009 Sep; 11(33):7219-24. PubMed ID: 19672532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration.
    Wang Q; Zhang Y; Zheng J; Wang Y; Hu T; Meng C
    Dalton Trans; 2017 Mar; 46(13):4303-4316. PubMed ID: 28281715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2009 Oct; 170(2-3):969-77. PubMed ID: 19520510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of nickel from aqueous solution by coir based adsorbent, puresorbe.
    Nityanandi D; Subbhuraam CV; Kadirvelu K
    Environ Technol; 2006 Jan; 27(1):15-24. PubMed ID: 16457171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.
    Arslan G; Pehlivan E
    Bioresour Technol; 2008 Nov; 99(16):7597-605. PubMed ID: 18358715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organofunctionalized Amazon smectite for dye removal from aqueous medium--kinetic and thermodynamic adsorption investigations.
    Guerra DL; Silva WL; Oliveira HC; Viana RR; Airoldi C
    J Hazard Mater; 2011 Feb; 186(1):675-82. PubMed ID: 21146923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.
    Kameda T; Oba J; Yoshioka T
    J Hazard Mater; 2015 Aug; 293():54-63. PubMed ID: 25827268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms.
    Malamis S; Katsou E
    J Hazard Mater; 2013 May; 252-253():428-61. PubMed ID: 23644019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.
    Nezamzadeh-Ejhieh A; Kabiri-Samani M
    J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.