These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28818142)

  • 1. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.
    Johannes B; Rothe S; Gens A; Westphal S; Birkenfeld K; Mulder E; Rittweger J; Ledderhos C
    Aerosp Med Hum Perform; 2017 Sep; 88(9):834-840. PubMed ID: 28818142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.
    McMahon TW; Newman DG
    Aerosp Med Hum Perform; 2015 Jul; 86(7):641-6. PubMed ID: 26102145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The psychophysiological assessment method for pilot's professional reliability.
    Zhang LM; Yu LS; Wang KN; Jing BS; Fang C
    Aviat Space Environ Med; 1997 May; 68(5):368-72. PubMed ID: 9143744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change Detection Flicker Task Effects on Simulator-Induced Spatial Disorientation Events.
    Lewkowicz R; Fudali-Czyż A; Bałaj B; Francuz P
    Aerosp Med Hum Perform; 2018 Oct; 89(10):863-872. PubMed ID: 30219113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flight Performance During Exposure to Acute Hypobaric Hypoxia.
    Steinman Y; van den Oord MHAH; Frings-Dresen MHW; Sluiter JK
    Aerosp Med Hum Perform; 2017 Aug; 88(8):760-767. PubMed ID: 28720186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.
    Li WC; Yu CS; Braithwaite G; Greaves M
    Aerosp Med Hum Perform; 2016 Dec; 87(12):989-995. PubMed ID: 28323583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helicopter Pilot Performance and Workload in a Following Task in a Degraded Visual Environment.
    Ledegang WD; van der Burg E; Valk PJL; Houben MMJ; Groen EL
    Aerosp Med Hum Perform; 2024 Jan; 95(1):16-24. PubMed ID: 38158569
    [No Abstract]   [Full Text] [Related]  

  • 8. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated take-off and landing.
    Hewson DJ; McNair PJ; Marshall RN
    Aviat Space Environ Med; 1999 Aug; 70(8):745-51. PubMed ID: 10447046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated rolls, loops and turns.
    Hewson DJ; McNair PJ; Marshall RN
    Aviat Space Environ Med; 2000 Aug; 71(8):798-805. PubMed ID: 10954356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Ocular and Physiological Metrics to Discriminate Flight Phases in Real Light Aircraft.
    Scannella S; Peysakhovich V; Ehrig F; Lepron E; Dehais F
    Hum Factors; 2018 Nov; 60(7):922-935. PubMed ID: 30044142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Use of flying tests for evaluating functional capabilities of pilots].
    Bodrov VA; Kupriianov AA; Fedoruk AG; Kharin VV
    Kosm Biol Aviakosm Med; 1985; 19(4):26-9. PubMed ID: 4057926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart rate responses to real and simulated BA Hawk MK 51 flight.
    Ylönen H; Lyytinen H; Leino T; Leppäluoto J; Kuronen P
    Aviat Space Environ Med; 1997 Jul; 68(7):601-5. PubMed ID: 9215465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.
    Taylor JL; Kennedy Q; Noda A; Yesavage JA
    Neurology; 2007 Feb; 68(9):648-54. PubMed ID: 17325270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responding to an Unexpected In-Flight Event: Physiological Arousal, Information Processing, and Performance.
    Kinney L; O'Hare D
    Hum Factors; 2020 Aug; 62(5):737-750. PubMed ID: 31237440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory Verbal Working Memory Load Effects on a Simulator-Induced Spatial Disorientation Event.
    Lewkowicz R; Stróżak P; Bałaj B; Francuz P
    Aerosp Med Hum Perform; 2019 Jun; 90(6):531-539. PubMed ID: 31101138
    [No Abstract]   [Full Text] [Related]  

  • 16. Flight Crew Workload Evaluation Based on the Workload Function Distribution Method.
    Zheng Y; Lu Y; Jie Y; Fu S
    Aerosp Med Hum Perform; 2017 May; 88(5):481-486. PubMed ID: 28417837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychophysiological response of military pilots in different combat flight maneuvers in a flight simulator.
    Villafaina S; Fuentes-García DJP; Gusi N; Tornero-Aguilera JF; Clemente-Suárez VJ
    Physiol Behav; 2021 Sep; 238():113483. PubMed ID: 34097973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.
    Hewson DJ; McNair PJ; Marshall RN
    Aviat Space Environ Med; 2001 Mar; 72(3):165-9. PubMed ID: 11277280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Disorientation Training in the Rotor Wing Flight Simulator.
    Powell-Dunford N; Bushby A; Leland RA
    Aerosp Med Hum Perform; 2016; 87(10):890-893. PubMed ID: 27662352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations.
    Allen JG; MacNaughton P; Cedeno-Laurent JG; Cao X; Flanigan S; Vallarino J; Rueda F; Donnelly-McLay D; Spengler JD
    J Expo Sci Environ Epidemiol; 2019 Jun; 29(4):457-468. PubMed ID: 30089876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.