These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28818228)
1. Phenotypic and functional transformation in smooth muscle cells derived from varicose veins. Xu Y; Bei Y; Li Y; Chu H J Vasc Surg Venous Lymphat Disord; 2017 Sep; 5(5):723-733. PubMed ID: 28818228 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic and Functional Transformation in Smooth Muscle Cells Derived from a Superficial Thrombophlebitis-affected Vein Wall. Li K; Yu G; Xu Y; Chu H; Zhong Y; Zhan H; Ann Vasc Surg; 2022 Feb; 79():335-347. PubMed ID: 34648856 [TBL] [Abstract][Full Text] [Related]
3. Disequilibrium in MMPs and the tissue inhibitor of metalloproteinases in different segments of the varicose great saphenous vein wall. Hu X; Hu F; Xu Y; Tang J; Chu H; Zhong Y Int Angiol; 2019 Jun; 38(3):185-193. PubMed ID: 31058480 [TBL] [Abstract][Full Text] [Related]
4. In vitro differences between smooth muscle cells derived from varicose veins and normal veins. Xiao Y; Huang Z; Yin H; Lin Y; Wang S J Vasc Surg; 2009 Nov; 50(5):1149-54. PubMed ID: 19703751 [TBL] [Abstract][Full Text] [Related]
5. Phenotype and function of smooth muscle cells derived from the human normal great saphenous vein in response to hypoxia. Chu H; Qin Y; Qiu T; Zhou S; Na Z; Sun Y; Xu Y; Zhong Y Phlebology; 2024 Mar; 39(2):96-107. PubMed ID: 37921696 [TBL] [Abstract][Full Text] [Related]
6. Elevated c-fos expression is correlated with phenotypic switching of human vascular smooth muscle cells derived from lower limb venous varicosities. Guo Z; Luo C; Zhu T; Li L; Zhang W J Vasc Surg Venous Lymphat Disord; 2021 Jan; 9(1):242-251. PubMed ID: 32360331 [TBL] [Abstract][Full Text] [Related]
7. Morphologic characteristics of varicose veins: possible role of metalloproteinases. Woodside KJ; Hu M; Burke A; Murakami M; Pounds LL; Killewich LA; Daller JA; Hunter GC J Vasc Surg; 2003 Jul; 38(1):162-9. PubMed ID: 12844106 [TBL] [Abstract][Full Text] [Related]
8. Desmuslin gene knockdown causes altered expression of phenotype markers and differentiation of saphenous vein smooth muscle cells. Xiao Y; Huang Z; Yin H; Zhang H; Wang S J Vasc Surg; 2010 Sep; 52(3):684-90. PubMed ID: 20573469 [TBL] [Abstract][Full Text] [Related]
9. Changes in levels of apoptosis in the walls of different segments of great saphenous varicose veins. Yongbo X; Wei H; Lei W; Jianhua Z; Tao W; Jinyuan T; Kun L; Haibo C Phlebology; 2016 Oct; 31(9):632-9. PubMed ID: 26420054 [TBL] [Abstract][Full Text] [Related]
10. The expression of matrix metalloproteinases and their tissue inhibitors in the vein wall following superficial venous thrombosis. Yu G; Li K; Xu Y; Chu H; Zhan H; Zhong Y Phlebology; 2022 Feb; 37(1):63-71. PubMed ID: 34494484 [TBL] [Abstract][Full Text] [Related]
11. FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells. Zhang C; Li H; Guo X Biol Res; 2019 Dec; 52(1):59. PubMed ID: 31801629 [TBL] [Abstract][Full Text] [Related]
12. Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins: does the skin reflect venous matrix changes? Sansilvestri-Morel P; Fioretti F; Rupin A; Senni K; Fabiani JN; Godeau G; Verbeuren TJ Clin Sci (Lond); 2007 Feb; 112(4):229-39. PubMed ID: 17020541 [TBL] [Abstract][Full Text] [Related]
13. Decreased PGE₂ content reduces MMP-1 activity and consequently increases collagen density in human varicose vein. Gomez I; Benyahia C; Louedec L; Leséche G; Jacob MP; Longrois D; Norel X PLoS One; 2014; 9(2):e88021. PubMed ID: 24505358 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory Effects of PRG4 on Migration and Proliferation of Human Venous Cells. Wang L; Kikuchi S; Schmidt TA; Hoofnagle M; Wight TN; Azuma N; Tang GL; Sobel M; Velamoor GR; Mokadam NA; Kenagy RD J Surg Res; 2020 Sep; 253():53-62. PubMed ID: 32320897 [TBL] [Abstract][Full Text] [Related]
15. Smooth muscle cells of human veins show an increased response to injury at valve sites. Kikuchi S; Chen L; Xiong K; Saito Y; Azuma N; Tang G; Sobel M; Wight TN; Kenagy RD J Vasc Surg; 2018 May; 67(5):1556-1570.e9. PubMed ID: 28647196 [TBL] [Abstract][Full Text] [Related]
16. Increased TIMP/MMP ratio in varicose veins: a possible explanation for extracellular matrix accumulation. Badier-Commander C; Verbeuren T; Lebard C; Michel JB; Jacob MP J Pathol; 2000 Sep; 192(1):105-12. PubMed ID: 10951407 [TBL] [Abstract][Full Text] [Related]
17. Distribution of orientation of smooth muscle bundles does not change along human great and small varicose veins. Kochová P; Witter K; Tonar Z Ann Anat; 2014 May; 196(2-3):67-74. PubMed ID: 24275047 [TBL] [Abstract][Full Text] [Related]
18. IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein. Huang X; Jin Y; Zhou D; Xu G; Huang J; Shen L Int J Clin Exp Pathol; 2014; 7(10):6475-85. PubMed ID: 25400725 [TBL] [Abstract][Full Text] [Related]
19. Varicose veins possess greater quantities of MMP-1 than normal veins and demonstrate regional variation in MMP-1 and MMP-13. Gillespie DL; Patel A; Fileta B; Chang A; Barnes S; Flagg A; Kidwell M; Villavicencio JL; Rich NM J Surg Res; 2002 Aug; 106(2):233-8. PubMed ID: 12175972 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical stretch-induced CLOCK upregulation in venous smooth muscle cells promotes phenotypic and functional transformation. Guo Z; Zhang W; Li X; Wang T; Yang X; Fan L Vascul Pharmacol; 2022 Oct; 146():107097. PubMed ID: 35963524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]