These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28818556)

  • 1. Receptor binding kinetics equations: Derivation using the Laplace transform method.
    Hoare SRJ
    J Pharmacol Toxicol Methods; 2018; 89():26-38. PubMed ID: 28818556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KINFIT II: a nonlinear least-squares program for analysis of kinetic binding data.
    Rovati GE; Shrager R; Nicosia S; Munson PJ
    Mol Pharmacol; 1996 Jul; 50(1):86-95. PubMed ID: 8700124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of Laplace transform for the general disposition deconvolution equation in drug metabolism kinetics.
    Popović J
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):409-11. PubMed ID: 10445406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic operational models of agonism for G-protein-coupled receptors.
    Hoare SRJ; Pierre N; Moya AG; Larson B
    J Theor Biol; 2018 Jun; 446():168-204. PubMed ID: 29486201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new, simple and robust radioligand binding method used to determine kinetic off-rate constants for unlabeled ligands. Application at α2A- and α2C-adrenoceptors.
    Uhlén S; Schiöth HB; Jahnsen JA
    Eur J Pharmacol; 2016 Oct; 788():113-121. PubMed ID: 27318322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the validity and errors of the pseudo-first-order kinetics in ligand-receptor binding.
    Stroberg W; Schnell S
    Math Biosci; 2017 May; 287():3-11. PubMed ID: 27693063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies.
    Morris ED; Alpert NM; Fischman AJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):841-53. PubMed ID: 8784229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A
    McNeely PM; Naranjo AN; Forsten-Williams K; Robinson AS
    SLAS Discov; 2017 Feb; 22(2):166-175. PubMed ID: 27577981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing PRED Subroutine of NONMEM for Versatile Pharmacokinetic Analysis Using Fast Inversion of Laplace Transform (FILT).
    Jin R; Hisaka A
    Chem Pharm Bull (Tokyo); 2020 Sep; 68(9):891-894. PubMed ID: 32611991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of receptor binding displacement curves by a nonhomologous ligand, on the basis of an equivalent competition principle.
    van Zoelen EJ
    Anal Biochem; 1992 Feb; 200(2):393-9. PubMed ID: 1321566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of an antibody-antigen binding constant by enzyme immunoassay and a theory for analysis of competitive binding of two ligands to heterogeneous receptor.
    Yagisawa S; Tanimori H; Kitagawa T
    J Biochem; 1986 Mar; 99(3):793-802. PubMed ID: 3086297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new general integral transform for solving integral equations.
    Jafari H
    J Adv Res; 2021 Sep; 32():133-138. PubMed ID: 34484832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical method for simultaneously measuring ex vivo drug receptor occupancy and dissociation rate: application to (R)-dimethindene occupancy of central histamine H1 receptors.
    Malany S; Hernandez LM; Smith WF; Crowe PD; Hoare SR
    J Recept Signal Transduct Res; 2009; 29(2):84-93. PubMed ID: 19308787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate method for determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves.
    Horovitz A; Levitzki A
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6654-8. PubMed ID: 3477796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for reliable determination of binding affinity constants by kinetic approach.
    Borgna JL
    J Steroid Biochem Mol Biol; 2005 Jul; 96(2):141-53. PubMed ID: 15925507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-point competition association assay: a fast and high-throughput kinetic screening method for assessing ligand-receptor binding kinetics.
    Guo D; van Dorp EJ; Mulder-Krieger T; van Veldhoven JP; Brussee J; Ijzerman AP; Heitman LH
    J Biomol Screen; 2013 Mar; 18(3):309-20. PubMed ID: 23093571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Kinetic Binding Properties of Unlabeled Ligands via a Preincubation Endpoint Binding Approach.
    Shimizu Y; Ogawa K; Nakayama M
    J Biomol Screen; 2016 Aug; 21(7):729-37. PubMed ID: 27270099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring receptor target coverage: a radioligand competition binding protocol for assessing the association and dissociation rates of unlabeled compounds.
    Sykes DA; Dowling MR; Charlton SJ
    Curr Protoc Pharmacol; 2010 Sep; Chapter 9():Unit 9.14. PubMed ID: 22294377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Partial' competition of heterobivalent ligand binding may be mistaken for allosteric interactions: a comparison of different target interaction models.
    Vauquelin G; Hall D; Charlton SJ
    Br J Pharmacol; 2015 May; 172(9):2300-15. PubMed ID: 25537684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinetics of competitive radioligand binding predicted by the law of mass action.
    Motulsky HJ; Mahan LC
    Mol Pharmacol; 1984 Jan; 25(1):1-9. PubMed ID: 6708928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.