These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28819110)
1. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice. Long NP; Lim DK; Mo C; Kim G; Kwon SW Sci Rep; 2017 Aug; 7(1):8552. PubMed ID: 28819110 [TBL] [Abstract][Full Text] [Related]
2. Optimized Mass Spectrometry-Based Metabolite Extraction and Analysis for the Geographical Discrimination of White Rice ( Lim DK; Long NP; Mo C; Dong Z; Lim J; Kwon SW J AOAC Int; 2018 Mar; 101(2):498-506. PubMed ID: 28762322 [TBL] [Abstract][Full Text] [Related]
3. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L. Lim DK; Mo C; Lee JH; Long NP; Dong Z; Li J; Lim J; Kwon SW J Food Drug Anal; 2018 Apr; 26(2):769-777. PubMed ID: 29567248 [TBL] [Abstract][Full Text] [Related]
4. Combination of mass spectrometry-based targeted lipidomics and supervised machine learning algorithms in detecting adulterated admixtures of white rice. Lim DK; Long NP; Mo C; Dong Z; Cui L; Kim G; Kwon SW Food Res Int; 2017 Oct; 100(Pt 1):814-821. PubMed ID: 28873754 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous Profiling of Lysoglycerophospholipids in Rice (Oryza sativa L.) Using Direct Infusion-Tandem Mass Spectrometry with Multiple Reaction Monitoring. Lim DK; Mo C; Long NP; Kim G; Kwon SW J Agric Food Chem; 2017 Mar; 65(12):2628-2634. PubMed ID: 28245645 [TBL] [Abstract][Full Text] [Related]
6. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. Lim DK; Mo C; Lee DK; Long NP; Lim J; Kwon SW J Food Drug Anal; 2018 Jan; 26(1):260-267. PubMed ID: 29389563 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of Geographical Origin of White and Brown Rice Samples Using NMR Spectroscopy Coupled with Machine Learning Techniques. Saeed M; Kim JS; Kim SY; Ryu JE; Ko J; Zaidi SFA; Seo JA; Kim YS; Lee DY; Choi HK Metabolites; 2022 Oct; 12(11):. PubMed ID: 36355095 [TBL] [Abstract][Full Text] [Related]
8. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: a preliminary case report in Korea, China and Philippine. Chung IM; Kim JK; Prabakaran M; Yang JH; Kim SH J Sci Food Agric; 2016 May; 96(7):2433-9. PubMed ID: 26243037 [TBL] [Abstract][Full Text] [Related]
9. Determination of starch lysophospholipids in rice using liquid chromatography-mass spectrometry (LC-MS). Liu L; Tong C; Bao J; Waters DL; Rose TJ; King GJ J Agric Food Chem; 2014 Jul; 62(28):6600-7. PubMed ID: 24953871 [TBL] [Abstract][Full Text] [Related]
10. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Weng S; Tang P; Yuan H; Guo B; Yu S; Huang L; Xu C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118237. PubMed ID: 32200232 [TBL] [Abstract][Full Text] [Related]
11. Lipidomic analysis of serum samples from migraine patients. Ren C; Liu J; Zhou J; Liang H; Wang Y; Sun Y; Ma B; Yin Y Lipids Health Dis; 2018 Feb; 17(1):22. PubMed ID: 29394939 [TBL] [Abstract][Full Text] [Related]
12. Variation of the light stable isotopes in the superior and inferior grains of rice (Oryza sativa L.) with different geographical origins. Chen T; Zhao Y; Zhang W; Yang S; Ye Z; Zhang G Food Chem; 2016 Oct; 209():95-8. PubMed ID: 27173539 [TBL] [Abstract][Full Text] [Related]
13. A rapid and reliable method for discriminating rice products from different regions using MCX-based solid-phase extraction and DI-MS/MS-based metabolomics approach. Lim DK; Mo C; Long NP; Lim J; Kwon SW J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1061-1062():185-192. PubMed ID: 28743095 [TBL] [Abstract][Full Text] [Related]
14. Specific targeted quantification combined with non-targeted metabolite profiling for quality evaluation of Gastrodia elata tubers from different geographical origins and cultivars. Ma XD; Fan YX; Jin CC; Wang F; Xin GZ; Li P; Li HJ J Chromatogr A; 2016 Jun; 1450():53-63. PubMed ID: 27157425 [TBL] [Abstract][Full Text] [Related]
15. Rapid Screening of Cadmium in Rice and Identification of Geographical Origins by Spectral Method. Li F; Wang J; Xu L; Wang S; Zhou M; Yin J; Lu A Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29439448 [TBL] [Abstract][Full Text] [Related]
16. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Jeong S; Ko J; Yeom JM Sci Total Environ; 2022 Jan; 802():149726. PubMed ID: 34464811 [TBL] [Abstract][Full Text] [Related]
17. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Cheajesadagul P; Arnaudguilhem C; Shiowatana J; Siripinyanond A; Szpunar J Food Chem; 2013 Dec; 141(4):3504-9. PubMed ID: 23993513 [TBL] [Abstract][Full Text] [Related]
18. Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China. Li G; Nunes L; Wang Y; Williams PN; Zheng M; Zhang Q; Zhu Y J Environ Sci (China); 2013 Jan; 25(1):144-54. PubMed ID: 23586309 [TBL] [Abstract][Full Text] [Related]
19. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Ch R; Chevallier O; McCarron P; McGrath TF; Wu D; Nguyen Doan Duy L; Kapil AP; McBride M; Elliott CT Food Chem; 2021 Jan; 334():127553. PubMed ID: 32688177 [TBL] [Abstract][Full Text] [Related]
20. Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins. Wang J; Zhu L; Zhang W; Wei Z Anal Chim Acta; 2019 Mar; 1050():60-70. PubMed ID: 30661592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]