BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2881919)

  • 1. Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens.
    Abraham LJ; Rood JI
    J Bacteriol; 1987 Apr; 169(4):1579-84. PubMed ID: 2881919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3.
    Abraham LJ; Wales AJ; Rood JI
    Plasmid; 1985 Jul; 14(1):37-46. PubMed ID: 2863833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical characterization of the Clostridium perfringens tetracycline-chloramphenicol resistance plasmid pIP401.
    Magot M
    Ann Microbiol (Paris); 1984; 135B(3):269-82. PubMed ID: 6099703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Clostridium perfringens chloramphenicol resistance transposon Tn4451 excises precisely in Escherichia coli.
    Abraham LJ; Rood JI
    Plasmid; 1988 Mar; 19(2):164-8. PubMed ID: 2901770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451.
    Crellin PK; Rood JI
    J Bacteriol; 1997 Aug; 179(16):5148-56. PubMed ID: 9260958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization analysis of three chloramphenicol resistance determinants from Clostridium perfringens and Clostridium difficile.
    Rood JI; Jefferson S; Bannam TL; Wilkie JM; Mullany P; Wren BW
    Antimicrob Agents Chemother; 1989 Sep; 33(9):1569-74. PubMed ID: 2554801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens.
    Lyras D; Storie C; Huggins AS; Crellin PK; Bannam TL; Rood JI
    Antimicrob Agents Chemother; 1998 Jul; 42(7):1563-7. PubMed ID: 9660983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of an Escherichia coli-Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens.
    Kim AY; Blaschek HP
    Appl Environ Microbiol; 1989 Feb; 55(2):360-5. PubMed ID: 2541660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants.
    Bannam TL; Rood JI
    Plasmid; 1993 May; 29(3):233-5. PubMed ID: 8356117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3.
    Abraham LJ; Rood JI
    Plasmid; 1985 May; 13(3):155-62. PubMed ID: 2860679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule.
    Bannam TL; Crellin PK; Rood JI
    Mol Microbiol; 1995 May; 16(3):535-51. PubMed ID: 7565113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization analysis of the class P tetracycline resistance determinant from the Clostridium perfringens R-plasmid, pCW3.
    Abraham LJ; Berryman DI; Rood JI
    Plasmid; 1988 Mar; 19(2):113-20. PubMed ID: 2901767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of tetracycline-resistance genes from various strains of Clostridium perfringens and expression in Escherichia coli.
    Saksena NK; Truffaut N
    Can J Microbiol; 1992 Mar; 38(3):215-21. PubMed ID: 1393823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens.
    Adams V; Han X; Lyras D; Rood JI
    Plasmid; 2018 Sep; 99():32-39. PubMed ID: 30055188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements.
    Villarroel R; Hedges RW; Maenhaut R; Leemans J; Engler G; Van Montagu M; Schell J
    Mol Gen Genet; 1983; 189(3):390-9. PubMed ID: 6306395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Clostridium perfringens vector for the selection of promoters.
    Matsushita C; Matsushita O; Koyama M; Okabe A
    Plasmid; 1994 May; 31(3):317-9. PubMed ID: 8058826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens.
    Roberts I; Holmes WM; Hylemon PB
    Appl Environ Microbiol; 1988 Jan; 54(1):268-70. PubMed ID: 2894200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX.
    Lyras D; Rood JI
    Mol Microbiol; 2000 Nov; 38(3):588-601. PubMed ID: 11069682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and hybridization analysis of ermP, a macrolide-lincosamide-streptogramin B resistance determinant from Clostridium perfringens.
    Berryman DI; Rood JI
    Antimicrob Agents Chemother; 1989 Aug; 33(8):1346-53. PubMed ID: 2552908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloramphenicol transposons found in Salmonella naestved and Escherichia coli of domestic animal origin.
    Terakado N; Sekizaki T; Hashimoto K; Yamagata S; Yamamoto T
    Antimicrob Agents Chemother; 1981 Sep; 20(3):382-6. PubMed ID: 6272632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.