These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 28819229)
1. Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Sejwal K; Chami M; Rémigy H; Vancraenenbroeck R; Sibran W; Sütterlin R; Baumgartner P; McLeod R; Chartier-Harlin MC; Baekelandt V; Stahlberg H; Taymans JM Sci Rep; 2017 Aug; 7(1):8667. PubMed ID: 28819229 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. Civiero L; Vancraenenbroeck R; Belluzzi E; Beilina A; Lobbestael E; Reyniers L; Gao F; Micetic I; De Maeyer M; Bubacco L; Baekelandt V; Cookson MR; Greggio E; Taymans JM PLoS One; 2012; 7(8):e43472. PubMed ID: 22952686 [TBL] [Abstract][Full Text] [Related]
3. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Civiero L; Bubacco L Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872 [TBL] [Abstract][Full Text] [Related]
4. Structure and regulation of full-length human leucine-rich repeat kinase 1. Metcalfe RD; Martinez Fiesco JA; Bonet-Ponce L; Kluss JH; Cookson MR; Zhang P Nat Commun; 2023 Aug; 14(1):4797. PubMed ID: 37558661 [TBL] [Abstract][Full Text] [Related]
5. Structure of LRRK1 and mechanisms of autoinhibition and activation. Reimer JM; Dickey AM; Lin YX; Abrisch RG; Mathea S; Chatterjee D; Fay EJ; Knapp S; Daugherty MD; Reck-Peterson SL; Leschziner AE Nat Struct Mol Biol; 2023 Nov; 30(11):1735-1745. PubMed ID: 37857821 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules. Snead DM; Matyszewski M; Dickey AM; Lin YX; Leschziner AE; Reck-Peterson SL Nat Struct Mol Biol; 2022 Dec; 29(12):1196-1207. PubMed ID: 36510024 [TBL] [Abstract][Full Text] [Related]
7. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. Reyniers L; Del Giudice MG; Civiero L; Belluzzi E; Lobbestael E; Beilina A; Arrigoni G; Derua R; Waelkens E; Li Y; Crosio C; Iaccarino C; Cookson MR; Baekelandt V; Greggio E; Taymans JM J Neurochem; 2014 Oct; 131(2):239-50. PubMed ID: 24947832 [TBL] [Abstract][Full Text] [Related]
8. Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Guaitoli G; Raimondi F; Gilsbach BK; Gómez-Llorente Y; Deyaert E; Renzi F; Li X; Schaffner A; Jagtap PK; Boldt K; von Zweydorf F; Gotthardt K; Lorimer DD; Yue Z; Burgin A; Janjic N; Sattler M; Versées W; Ueffing M; Ubarretxena-Belandia I; Kortholt A; Gloeckner CJ Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4357-66. PubMed ID: 27357661 [TBL] [Abstract][Full Text] [Related]
9. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. Dederer V; Sanz Murillo M; Karasmanis EP; Hatch KS; Chatterjee D; Preuss F; Abdul Azeez KR; Nguyen LV; Galicia C; Dreier B; Plückthun A; Versees W; Mathea S; Leschziner AE; Reck-Peterson SL; Knapp S J Biol Chem; 2024 Jul; 300(7):107469. PubMed ID: 38876305 [TBL] [Abstract][Full Text] [Related]
10. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061 [TBL] [Abstract][Full Text] [Related]
11. Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease. Westerlund M; Belin AC; Anvret A; Bickford P; Olson L; Galter D Neuroscience; 2008 Mar; 152(2):429-36. PubMed ID: 18272292 [TBL] [Abstract][Full Text] [Related]
12. Roc, the G-domain of the Parkinson's disease-associated protein LRRK2. Park Y; Liao J; Hoang QQ Trends Biochem Sci; 2022 Dec; 47(12):1038-1047. PubMed ID: 35840518 [TBL] [Abstract][Full Text] [Related]
13. Closing the structure-to-function gap for LRRK2. Tokars V; Chen C; Parisiadou L Trends Biochem Sci; 2022 Mar; 47(3):187-188. PubMed ID: 34756665 [TBL] [Abstract][Full Text] [Related]
14. The Parkinson disease gene LRRK2: evolutionary and structural insights. Marín I Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681 [TBL] [Abstract][Full Text] [Related]
15. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Zhu H; Tonelli F; Turk M; Prescott A; Alessi DR; Sun J Science; 2023 Dec; 382(6677):1404-1411. PubMed ID: 38127736 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of the full-length human LRRK2. Myasnikov A; Zhu H; Hixson P; Xie B; Yu K; Pitre A; Peng J; Sun J Cell; 2021 Jun; 184(13):3519-3527.e10. PubMed ID: 34107286 [TBL] [Abstract][Full Text] [Related]
17. Molecular Insights and Functional Implication of LRRK2 Dimerization. Civiero L; Russo I; Bubacco L; Greggio E Adv Neurobiol; 2017; 14():107-121. PubMed ID: 28353281 [TBL] [Abstract][Full Text] [Related]
18. First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein. Guaitoli G; Gilsbach BK; Raimondi F; Gloeckner CJ Biochem Soc Trans; 2016 Dec; 44(6):1635-1641. PubMed ID: 27913672 [TBL] [Abstract][Full Text] [Related]
19. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894 [TBL] [Abstract][Full Text] [Related]
20. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. Galicia C; Guaitoli G; Fislage M; Gloeckner CJ; Versées W Elife; 2024 Apr; 13():. PubMed ID: 38666771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]