BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28819328)

  • 1. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands.
    Schilter D; Gray DL; Fuller AL; Rauchfuss TB
    Aust J Chem; 2017 May; 70(5):505-515. PubMed ID: 28819328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe
    Orton GRF; Ghosh S; Alker L; Sarker JC; Pugh D; Richmond MG; Hartl F; Hogarth G
    Dalton Trans; 2022 Jun; 51(25):9748-9769. PubMed ID: 35703728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties.
    Carroll ME; Barton BE; Gray DL; Mack AE; Rauchfuss TB
    Inorg Chem; 2011 Oct; 50(19):9554-63. PubMed ID: 21866886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase.
    Li Z; Ohki Y; Tatsumi K
    J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site.
    Schilter D; Nilges MJ; Chakrabarti M; Lindahl PA; Rauchfuss TB; Stein M
    Inorg Chem; 2012 Feb; 51(4):2338-48. PubMed ID: 22304696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures.
    Schilter D; Rauchfuss TB; Stein M
    Inorg Chem; 2012 Aug; 51(16):8931-41. PubMed ID: 22838645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction.
    Gao W; Ekström J; Liu J; Chen C; Eriksson L; Weng L; Akermark B; Sun L
    Inorg Chem; 2007 Mar; 46(6):1981-91. PubMed ID: 17295467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic and structural investigations of linear and macrocyclic nickel/iron/sulfur cluster complexes.
    Song LC; Li YL; Li L; Gu ZC; Hu QM
    Inorg Chem; 2010 Nov; 49(21):10174-82. PubMed ID: 20879721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe
    Rahaman A; Ghosh S; Unwin DG; Basak-Modi S; Holt KB; Kabir SE; Nordlander E; Richmond MG; Hogarth G
    Organometallics; 2014 Mar; 33(6):1356-1366. PubMed ID: 24748710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel.
    Huynh MT; Schilter D; Hammes-Schiffer S; Rauchfuss TB
    J Am Chem Soc; 2014 Sep; 136(35):12385-95. PubMed ID: 25094041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of phosphine derivatives of [Fe
    Hizbullah L; Rahaman A; Safavi S; Haukka M; Tocher DA; Lisensky GC; Nordlander E
    J Inorg Biochem; 2023 Sep; 246():112272. PubMed ID: 37339572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase.
    Pal S; Ohki Y; Yoshikawa T; Kuge K; Tatsumi K
    Chem Asian J; 2009 Jun; 4(6):961-968. PubMed ID: 19130447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the electronic structure and the Ni-Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase.
    Zhu W; Marr AC; Wang Q; Neese F; Spencer DJ; Blake AJ; Cooke PA; Wilson C; Schröder M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18280-5. PubMed ID: 16352727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dithiolato and Hydrido Bridged (CO/CN)Fe-Ni Complex with Unprotected CN: A Model for the [Ni-R] State of the [Ni-Fe] Hydrogenase Active Site.
    Bose M; Li Z; Matsumoto T; Tatsumi K
    Inorg Chem; 2020 Jan; 59(2):968-971. PubMed ID: 31891256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Designs and Structural Investigations of Biomimetic Ni-Fe Thiolates.
    Basu D; Bailey TS; Lalaoui N; Richers CP; Woods TJ; Rauchfuss TB; Arrigoni F; Zampella G
    Inorg Chem; 2019 Feb; 58(4):2430-2443. PubMed ID: 30707014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel-iron dithiolates related to the deactivated [NiFe]-hydrogenases.
    Schilter D; Rauchfuss TB
    Dalton Trans; 2012 Nov; 41(43):13324-9. PubMed ID: 22992700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe
    Kariyawasam Pathirana KD; Ghosh P; Hsieh CH; Elrod LC; Bhuvanesh N; Darensbourg DJ; Darensbourg MY
    Inorg Chem; 2020 Mar; 59(6):3753-3763. PubMed ID: 32083850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenase biomimics containing redox-active ligands: Fe
    Ghosh S; Hollingsworth N; Warren M; Hrovat DA; Richmond MG; Hogarth G
    Dalton Trans; 2019 May; 48(18):6051-6060. PubMed ID: 30734798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH
    J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.