These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1144 related articles for article (PubMed ID: 28819831)
1. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
2. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Pandey SK; Bhattacharya T; Chakraborty S Int J Phytoremediation; 2016; 18(1):87-93. PubMed ID: 26147810 [TBL] [Abstract][Full Text] [Related]
3. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability. Gupta AK; Sinha S J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
5. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Maiti SK; Jaiswal S Environ Monit Assess; 2008 Jan; 136(1-3):355-70. PubMed ID: 17429748 [TBL] [Abstract][Full Text] [Related]
6. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Kumari A; Lal B; Rai UN Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874 [TBL] [Abstract][Full Text] [Related]
7. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash. Kumari A; Lal B; Pakade YB; Chand P Int J Phytoremediation; 2011 Sep; 13(8):779-87. PubMed ID: 21972518 [TBL] [Abstract][Full Text] [Related]
8. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Singh R; Singh DP; Kumar N; Bhargava SK; Barman SC J Environ Biol; 2010 Jul; 31(4):421-30. PubMed ID: 21186714 [TBL] [Abstract][Full Text] [Related]
9. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Rana V; Maiti SK Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202 [TBL] [Abstract][Full Text] [Related]
10. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures. Sharma B; Kothari R; Singh RP Environ Sci Pollut Res Int; 2018 May; 25(13):12619-12640. PubMed ID: 29468393 [TBL] [Abstract][Full Text] [Related]
11. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Gajaje K; Ultra VU; David PW; Rantong G Environ Sci Pollut Res Int; 2021 Apr; 28(16):20637-20649. PubMed ID: 33405121 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant "Kolubara". Krgović R; Trifković J; Milojković-Opsenica D; Manojlović D; Marković M; Mutić J Environ Sci Pollut Res Int; 2015 Jul; 22(14):10506-15. PubMed ID: 25728199 [TBL] [Abstract][Full Text] [Related]
13. Decontamination and/or revegetation of fly ash dykes through naturally growing plants. Gupta AK; Sinha S J Hazard Mater; 2008 May; 153(3):1078-87. PubMed ID: 17964714 [TBL] [Abstract][Full Text] [Related]
14. Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective. Yadav S; Pandey VC; Singh L Int J Phytoremediation; 2024; 26(9):1518-1525. PubMed ID: 38563239 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Mujtaba Munir MA; Liu G; Yousaf B; Ali MU; Abbas Q; Ullah H Chemosphere; 2020 Feb; 240():124845. PubMed ID: 31561162 [TBL] [Abstract][Full Text] [Related]
16. Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land. Kisku GC; Kumar V; Sahu P; Kumar P; Kumar N Int J Phytoremediation; 2018 Mar; 20(4):330-337. PubMed ID: 29584466 [TBL] [Abstract][Full Text] [Related]
17. Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent. Rana V; Maiti SK Bull Environ Contam Toxicol; 2018 Jul; 101(1):55-60. PubMed ID: 29761304 [TBL] [Abstract][Full Text] [Related]
18. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
19. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560 [TBL] [Abstract][Full Text] [Related]
20. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]