BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28820115)

  • 1. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases.
    Nagy LG; Tóth R; Kiss E; Slot J; Gácser A; Kovács GM
    Microbiol Spectr; 2017 Jul; 5(4):. PubMed ID: 28820115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex multicellularity in fungi: evolutionary convergence, single origin, or both?
    Nagy LG; Kovács GM; Krizsán K
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1778-1794. PubMed ID: 29675836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi.
    Torruella G; de Mendoza A; Grau-Bové X; Antó M; Chaplin MA; del Campo J; Eme L; Pérez-Cordón G; Whipps CM; Nichols KM; Paley R; Roger AJ; Sitjà-Bobadilla A; Donachie S; Ruiz-Trillo I
    Curr Biol; 2015 Sep; 25(18):2404-10. PubMed ID: 26365255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi.
    Krizsán K; Almási É; Merényi Z; Sahu N; Virágh M; Kószó T; Mondo S; Kiss B; Bálint B; Kües U; Barry K; Cseklye J; Hegedüs B; Henrissat B; Johnson J; Lipzen A; Ohm RA; Nagy I; Pangilinan J; Yan J; Xiong Y; Grigoriev IV; Hibbett DS; Nagy LG
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7409-7418. PubMed ID: 30902897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi.
    Sánchez-García M; Ryberg M; Khan FK; Varga T; Nagy LG; Hibbett DS
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32528-32534. PubMed ID: 33257574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics reveals the origin of fungal hyphae and multicellularity.
    Kiss E; Hegedüs B; Virágh M; Varga T; Merényi Z; Kószó T; Bálint B; Prasanna AN; Krizsán K; Kocsubé S; Riquelme M; Takeshita N; Nagy LG
    Nat Commun; 2019 Sep; 10(1):4080. PubMed ID: 31501435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyphal morphogenesis: an evolutionary perspective.
    Harris SD
    Fungal Biol; 2011 Jun; 115(6):475-84. PubMed ID: 21640312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae).
    Yagame T; Funabiki E; Nagasawa E; Fukiharu T; Iwase K
    Am J Bot; 2013 Sep; 100(9):1823-30. PubMed ID: 24026354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and recent changes in fungal fruiting patterns.
    Gange AC; Gange EG; Sparks TH; Boddy L
    Science; 2007 Apr; 316(5821):71. PubMed ID: 17412949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.
    Richards TA; Dacks JB; Jenkinson JM; Thornton CR; Talbot NJ
    Curr Biol; 2006 Sep; 16(18):1857-64. PubMed ID: 16979565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?
    Arnold AE; Miadlikowska J; Higgins KL; Sarvate SD; Gugger P; Way A; Hofstetter V; Kauff F; Lutzoni F
    Syst Biol; 2009 Jun; 58(3):283-97. PubMed ID: 20525584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary dynamics of host specialization in wood-decay fungi.
    Krah FS; Bässler C; Heibl C; Soghigian J; Schaefer H; Hibbett DS
    BMC Evol Biol; 2018 Aug; 18(1):119. PubMed ID: 30075699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular structure and behaviour in fungal hyphae.
    Roberson RW
    J Microsc; 2020 Nov; 280(2):75-85. PubMed ID: 32700404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology.
    Plett JM; Martin F
    Curr Opin Plant Biol; 2015 Aug; 26():45-50. PubMed ID: 26116975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies.
    Spatafora JW; Aime MC; Grigoriev IV; Martin F; Stajich JE; Blackwell M
    Microbiol Spectr; 2017 Sep; 5(5):. PubMed ID: 28917057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.
    Liu YJ; Hodson MC; Hall BD
    BMC Evol Biol; 2006 Sep; 6():74. PubMed ID: 17010206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits.
    Merényi Z; Krizsán K; Sahu N; Liu XB; Bálint B; Stajich JE; Spatafora JW; Nagy LG
    Nat Ecol Evol; 2023 Aug; 7(8):1221-1231. PubMed ID: 37349567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution.
    Nagy LG; Riley R; Bergmann PJ; Krizsán K; Martin FM; Grigoriev IV; Cullen D; Hibbett DS
    Mol Biol Evol; 2017 Jan; 34(1):35-44. PubMed ID: 27834665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota).
    Schmitt I; Prado RD; Grube M; Lumbsch HT
    Mol Phylogenet Evol; 2009 Jul; 52(1):34-44. PubMed ID: 19328858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.
    Almási É; Sahu N; Krizsán K; Bálint B; Kovács GM; Kiss B; Cseklye J; Drula E; Henrissat B; Nagy I; Chovatia M; Adam C; LaButti K; Lipzen A; Riley R; Grigoriev IV; Nagy LG
    New Phytol; 2019 Oct; 224(2):902-915. PubMed ID: 31257601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.