These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28820198)

  • 1. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal blueshift of the absorption edge in graphene nanodots.
    Sheng W
    J Chem Phys; 2018 Jun; 148(21):214301. PubMed ID: 29884030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric screening of excitons in monolayer graphene.
    Yadav P; Srivastava PK; Ghosh S
    Nanoscale; 2015 Nov; 7(43):18015-9. PubMed ID: 26469682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hubbard excitons in two-dimensional nanomaterials.
    Huang L; Xie J; Sheng W
    J Phys Condens Matter; 2019 Jul; 31(27):275302. PubMed ID: 30952139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal scaling of excitons in phosphorene quantum dots.
    Zhong J; Huang L; Sheng W
    Phys Chem Chem Phys; 2020 Mar; 22(10):5723-5728. PubMed ID: 32104811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling of excitons in graphene nanodots.
    Sheng W; Wang H
    Phys Chem Chem Phys; 2016 Oct; 18(40):28365-28369. PubMed ID: 27711650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Optical Excitations in Twisted Bilayer Graphene Form Strongly Bound Excitons.
    Patel H; Havener RW; Brown L; Liang Y; Yang L; Park J; Graham MW
    Nano Lett; 2015 Sep; 15(9):5932-7. PubMed ID: 26222387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.
    Park KD; Jiang T; Clark G; Xu X; Raschke MB
    Nat Nanotechnol; 2018 Jan; 13(1):59-64. PubMed ID: 29158602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system.
    Gao B; Chen T; Wu XC; Flynn M; Duan C; Chen L; Huang CL; Liebman J; Li S; Ye F; Stone MB; Podlesnyak A; Abernathy DL; Adroja DT; Duc Le M; Huang Q; Nevidomskyy AH; Morosan E; Balents L; Dai P
    Nat Commun; 2023 Apr; 14(1):2051. PubMed ID: 37045810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable excitons in bilayer graphene.
    Ju L; Wang L; Cao T; Taniguchi T; Watanabe K; Louie SG; Rana F; Park J; Hone J; Wang F; McEuen PL
    Science; 2017 Nov; 358(6365):907-910. PubMed ID: 29146807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many-body effects and excitonic features in 2D biphenylene carbon.
    Lüder J; Puglia C; Ottosson H; Eriksson O; Sanyal B; Brena B
    J Chem Phys; 2016 Jan; 144(2):024702. PubMed ID: 26772582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic edge-state excitons in zigzag graphene nanoribbons.
    Yang L; Cohen ML; Louie SG
    Phys Rev Lett; 2008 Oct; 101(18):186401. PubMed ID: 18999843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitonic effects in the optical spectra of graphene nanoribbons.
    Yang L; Cohen ML; Louie SG
    Nano Lett; 2007 Oct; 7(10):3112-5. PubMed ID: 17824720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons.
    Dai YY; Chen A; Xia YY; Han DZ; Liu XH; Shi L; Zi J
    Opt Express; 2016 Sep; 24(18):20021-8. PubMed ID: 27607610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using dark states for exciton storage in transition-metal dichalcogenides.
    Tseng F; Simsek E; Gunlycke D
    J Phys Condens Matter; 2016 Jan; 28(3):034005. PubMed ID: 26704568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.
    Uda T; Yoshida M; Ishii A; Kato YK
    Nano Lett; 2016 Apr; 16(4):2278-82. PubMed ID: 26999284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.
    Leng X; Yin H; Liang D; Ma Y
    J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.