These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28820200)
1. Statistical thermodynamics unveils the dissolution mechanism of cellobiose. Nicol TWJ; Isobe N; Clark JH; Shimizu S Phys Chem Chem Phys; 2017 Aug; 19(34):23106-23112. PubMed ID: 28820200 [TBL] [Abstract][Full Text] [Related]
2. Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene. Ganguly P; Hajari T; van der Vegt NF J Phys Chem B; 2014 May; 118(20):5331-9. PubMed ID: 24792435 [TBL] [Abstract][Full Text] [Related]
3. Novel insights on room temperature-induced cellulose dissolution mechanism via ZnCl Ma W; Li X; Zhang L; Zheng Y; Xi Y; Ma J; Wang Z Int J Biol Macromol; 2024 Jun; 272(Pt 2):132912. PubMed ID: 38851617 [TBL] [Abstract][Full Text] [Related]
4. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra. Cao B; Du J; Du D; Sun H; Zhu X; Fu H Carbohydr Polym; 2016 Sep; 149():348-56. PubMed ID: 27261759 [TBL] [Abstract][Full Text] [Related]
5. Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics that Afford the Solubility of Cellulose. Sen S; Losey BP; Gordon EE; Argyropoulos DS; Martin JD J Phys Chem B; 2016 Feb; 120(6):1134-41. PubMed ID: 26800761 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces. Hoja J; Maurer RJ; Sax AF J Phys Chem B; 2014 Jul; 118(30):9017-27. PubMed ID: 25036217 [TBL] [Abstract][Full Text] [Related]
7. Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. Zhang C; Liu R; Xiang J; Kang H; Liu Z; Huang Y J Phys Chem B; 2014 Aug; 118(31):9507-14. PubMed ID: 25026263 [TBL] [Abstract][Full Text] [Related]
8. Hydration patterns and salting effects in sodium chloride solution. Li W; Mu Y J Chem Phys; 2011 Oct; 135(13):134502. PubMed ID: 21992319 [TBL] [Abstract][Full Text] [Related]
9. Preferential interactions between lithium chloride and glucan chains in N,N-dimethylacetamide drive cellulose dissolution. Gross AS; Bell AT; Chu JW J Phys Chem B; 2013 Mar; 117(12):3280-6. PubMed ID: 23442105 [TBL] [Abstract][Full Text] [Related]
10. QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus. Liu J; Wang X; Xu D J Phys Chem B; 2010 Jan; 114(3):1462-70. PubMed ID: 20041728 [TBL] [Abstract][Full Text] [Related]
11. Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics. Annunziata O; Payne A; Wang Y J Am Chem Soc; 2008 Oct; 130(40):13347-52. PubMed ID: 18788805 [TBL] [Abstract][Full Text] [Related]
12. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. Li J; Jiang Z; Hu L; Hu C ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141 [TBL] [Abstract][Full Text] [Related]
13. Hydration forces underlie the exclusion of salts and of neutral polar solutes from hydroxypropylcellulose. Chik J; Mizrahi S; Chi S; Parsegian VA; Rau DC J Phys Chem B; 2005 May; 109(18):9111-8. PubMed ID: 16852084 [TBL] [Abstract][Full Text] [Related]
14. On the salt-induced stabilization of pair and many-body hydrophobic interactions. Ghosh T; Kalra A; Garde S J Phys Chem B; 2005 Jan; 109(1):642-51. PubMed ID: 16851057 [TBL] [Abstract][Full Text] [Related]
15. Improved thermal stability of regenerated cellulose films from corn (Zea mays) stalk pith using facile preparation with low-concentration zinc chloride dissolving. Zhang H; Chen K; Gao X; Han Q; Peng L Carbohydr Polym; 2019 Aug; 217():190-198. PubMed ID: 31079676 [TBL] [Abstract][Full Text] [Related]
16. Dehydration Pathways for Glucose and Cellobiose During Fast Pyrolysis. Easton MW; Nash JJ; Kenttämaa HI J Phys Chem A; 2018 Oct; 122(41):8071-8085. PubMed ID: 30216724 [TBL] [Abstract][Full Text] [Related]
17. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. Bu L; Beckham GT; Crowley MF; Chang CH; Matthews JF; Bomble YJ; Adney WS; Himmel ME; Nimlos MR J Phys Chem B; 2009 Aug; 113(31):10994-1002. PubMed ID: 19594145 [TBL] [Abstract][Full Text] [Related]
18. Dissolution of cellulose in room temperature ionic liquids: anion dependence. Payal RS; Bejagam KK; Mondal A; Balasubramanian S J Phys Chem B; 2015 Jan; 119(4):1654-9. PubMed ID: 25535797 [TBL] [Abstract][Full Text] [Related]
19. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Schestakow M; Karadagli I; Ratke L Carbohydr Polym; 2016 Feb; 137():642-649. PubMed ID: 26686174 [TBL] [Abstract][Full Text] [Related]
20. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Loerbroks C; Rinaldi R; Thiel W Chemistry; 2013 Nov; 19(48):16282-94. PubMed ID: 24136817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]