These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28820200)
21. Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations. Payal RS; Bharath R; Periyasamy G; Balasubramanian S J Phys Chem B; 2012 Jan; 116(2):833-40. PubMed ID: 22171976 [TBL] [Abstract][Full Text] [Related]
22. Ionization of Cellobiose in Aqueous Alkali and the Mechanism of Cellulose Dissolution. Bialik E; Stenqvist B; Fang Y; Östlund Å; Furó I; Lindman B; Lund M; Bernin D J Phys Chem Lett; 2016 Dec; 7(24):5044-5048. PubMed ID: 27973886 [TBL] [Abstract][Full Text] [Related]
23. Zinc chloride aqueous solution as a solvent for starch. Lin M; Shang X; Liu P; Xie F; Chen X; Sun Y; Wan J Carbohydr Polym; 2016 Jan; 136():266-73. PubMed ID: 26572355 [TBL] [Abstract][Full Text] [Related]
24. Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Alves L; Medronho B; Antunes FE; Topgaard D; Lindman B Carbohydr Polym; 2016 Oct; 151():707-715. PubMed ID: 27474617 [TBL] [Abstract][Full Text] [Related]
25. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride. Gross AS; Bell AT; Chu JW J Phys Chem B; 2011 Nov; 115(46):13433-40. PubMed ID: 21950594 [TBL] [Abstract][Full Text] [Related]
26. The effect of salt on protein chemical potential determined by ternary diffusion in aqueous solutions. Annunziata O; Paduano L; Pearlstein AJ; Miller DG; Albright JG J Phys Chem B; 2006 Jan; 110(3):1405-15. PubMed ID: 16471691 [TBL] [Abstract][Full Text] [Related]
27. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. Gibb CL; Gibb BC J Am Chem Soc; 2011 May; 133(19):7344-7. PubMed ID: 21524086 [TBL] [Abstract][Full Text] [Related]
28. Dissolution mechanism of cellulose in quaternary ammonium hydroxide: Revisiting through molecular interactions. Zhong C; Cheng F; Zhu Y; Gao Z; Jia H; Wei P Carbohydr Polym; 2017 Oct; 174():400-408. PubMed ID: 28821085 [TBL] [Abstract][Full Text] [Related]
29. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. Athawale MV; Sarupria S; Garde S J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346 [TBL] [Abstract][Full Text] [Related]
30. Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water. Jiang Z; Yi J; Li J; He T; Hu C ChemSusChem; 2015 Jun; 8(11):1901-7. PubMed ID: 25916895 [TBL] [Abstract][Full Text] [Related]
31. A facile route to prepare cellulose-based films. Xu Q; Chen C; Rosswurm K; Yao T; Janaswamy S Carbohydr Polym; 2016 Sep; 149():274-81. PubMed ID: 27261751 [TBL] [Abstract][Full Text] [Related]
32. Understanding the role of temperature change and the presence of NaCl salts on caffeine aggregation in aqueous solution: from structural and thermodynamics point of view. Sharma B; Paul S J Phys Chem B; 2015 May; 119(21):6421-32. PubMed ID: 25933221 [TBL] [Abstract][Full Text] [Related]
33. Hydrotrope accumulation around the drug: the driving force for solubilization and minimum hydrotrope concentration for nicotinamide and urea. Booth JJ; Omar M; Abbott S; Shimizu S Phys Chem Chem Phys; 2015 Mar; 17(12):8028-37. PubMed ID: 25723588 [TBL] [Abstract][Full Text] [Related]
34. Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. de Oliveira HF; Rinaldi R ChemSusChem; 2015 May; 8(9):1577-84. PubMed ID: 25857290 [TBL] [Abstract][Full Text] [Related]
35. Mass spectrometric study of glucose and cellobiose produced during enzymatic hydrolysis of alpha-cellulose extracted from oak late-wood annual rings. Sensuła BM; Derrick PJ; Bickerton JC; Pazdur A Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2070-4. PubMed ID: 19504493 [TBL] [Abstract][Full Text] [Related]
36. Comment on "NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids" by J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He and J. Xiang, Phys. Chem. Chem. Phys., 2010, 12, 1941. Remsing RC; Petrik ID; Liu Z; Moyna G Phys Chem Chem Phys; 2010 Nov; 12(44):14827-8; discussion 14829-30. PubMed ID: 20959901 [No Abstract] [Full Text] [Related]
37. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase. Igarashi K; Wada M; Samejima M FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934 [TBL] [Abstract][Full Text] [Related]
38. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis. Ono Y; Ishida T; Soeta H; Saito T; Isogai A Biomacromolecules; 2016 Jan; 17(1):192-9. PubMed ID: 26618937 [TBL] [Abstract][Full Text] [Related]
39. Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Wu TH; Huang CH; Ko TP; Lai HL; Ma Y; Chen CC; Cheng YS; Liu JR; Guo RT Biochim Biophys Acta; 2011 Dec; 1814(12):1832-40. PubMed ID: 21839861 [TBL] [Abstract][Full Text] [Related]
40. Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study. Bergenstråhle M; Thormann E; Nordgren N; Berglund LA Langmuir; 2009 Apr; 25(8):4635-42. PubMed ID: 19231815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]