These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28820200)
41. Insights into the interactions between cellulose and biological molecules. Cao B; Wang C; Zhou Z Carbohydr Res; 2023 Jan; 523():108738. PubMed ID: 36587542 [TBL] [Abstract][Full Text] [Related]
42. Simulation studies of the insolubility of cellulose. Bergenstråhle M; Wohlert J; Himmel ME; Brady JW Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283 [TBL] [Abstract][Full Text] [Related]
43. Elucidating the conformational energetics of glucose and cellobiose in ionic liquids. Bharadwaj VS; Schutt TC; Ashurst TC; Maupin CM Phys Chem Chem Phys; 2015 Apr; 17(16):10668-78. PubMed ID: 25806620 [TBL] [Abstract][Full Text] [Related]
44. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization. Fox JM; Levine SE; Blanch HW; Clark DS Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702 [TBL] [Abstract][Full Text] [Related]
45. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. Ignatyev IA; Van Doorslaer C; Mertens PG; Binnemans K; De Vos DE ChemSusChem; 2010; 3(1):91-6. PubMed ID: 20049766 [TBL] [Abstract][Full Text] [Related]
46. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. Zhao Y; Liu X; Wang J; Zhang S Chemphyschem; 2012 Sep; 13(13):3126-33. PubMed ID: 22730352 [TBL] [Abstract][Full Text] [Related]
47. Predicting Km values of beta-glucosidases using cellobiose as substrate. Yan SM; Shi DQ; Nong H; Wu G Interdiscip Sci; 2012 Mar; 4(1):46-53. PubMed ID: 22392276 [TBL] [Abstract][Full Text] [Related]
48. Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing-thawing. Wang Y; Liu L; Chen P; Zhang L; Lu A Phys Chem Chem Phys; 2018 May; 20(20):14223-14233. PubMed ID: 29761185 [TBL] [Abstract][Full Text] [Related]
49. Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose. French AD; Montgomery DW; Prevost NT; Edwards JV; Woods RJ Carbohydr Polym; 2021 Jul; 264():118004. PubMed ID: 33910736 [TBL] [Abstract][Full Text] [Related]
50. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. Dee SJ; Bell AT ChemSusChem; 2011 Aug; 4(8):1166-73. PubMed ID: 21809450 [TBL] [Abstract][Full Text] [Related]
51. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. An D; Ye A; Deng W; Zhang Q; Wang Y Chemistry; 2012 Mar; 18(10):2938-47. PubMed ID: 22298297 [TBL] [Abstract][Full Text] [Related]
52. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid. Chen J; Wang S; Huang J; Chen L; Ma L; Huang X ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979 [TBL] [Abstract][Full Text] [Related]
53. Understanding the Water-in-Salt to Salt-in-Water Characteristics across the Zinc Chloride : Water Phase Diagram. Pillai SB; Wilcox RJ; Hillis BG; Losey BP; Martin JD J Phys Chem B; 2022 Mar; 126(11):2265-2278. PubMed ID: 35139641 [TBL] [Abstract][Full Text] [Related]
54. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. Liu H; Sale KL; Holmes BM; Simmons BA; Singh S J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725 [TBL] [Abstract][Full Text] [Related]
55. An integrated catalytic approach to fermentable sugars from cellulose. Rinaldi R; Engel P; Büchs J; Spiess AC; Schüth F ChemSusChem; 2010 Oct; 3(10):1151-3. PubMed ID: 20799317 [No Abstract] [Full Text] [Related]
56. Interaction of Pd and PdCl2 with cellulose: a theoretical investigation. Chatterjee B; Reddy BV; Rao BK; Khanna SN; Jena P J Phys Chem B; 2005 Dec; 109(49):23655-60. PubMed ID: 16375344 [TBL] [Abstract][Full Text] [Related]
57. Effect of physicochemical characteristics of cellulosic substrates on enzymatic hydrolysis by means of a multi-stage process for cellobiose production. Vanderghem C; Jacquet N; Danthine S; Blecker C; Paquot M Appl Biochem Biotechnol; 2012 Mar; 166(6):1423-32. PubMed ID: 22270549 [TBL] [Abstract][Full Text] [Related]
58. Cellulose conversion to isosorbide in molten salt hydrate media. de Almeida RM; Li J; Nederlof C; O'Connor P; Makkee M; Moulijn JA ChemSusChem; 2010 Mar; 3(3):325-8. PubMed ID: 20186909 [No Abstract] [Full Text] [Related]
59. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor. Mahoney JM; Beatty AM; Smith BD Inorg Chem; 2004 Nov; 43(24):7617-21. PubMed ID: 15554626 [TBL] [Abstract][Full Text] [Related]
60. Interactions of D-cellobiose with selected chloride salts: A ¹³C NMR and FT-IR study. Amarasekara AS; Wiredu B Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():113-6. PubMed ID: 26836451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]