These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28820238)

  • 1. Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.
    Secor EB; Gao TZ; Dos Santos MH; Wallace SG; Putz KW; Hersam MC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29418-29423. PubMed ID: 28820238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.
    Secor EB; Ahn BY; Gao TZ; Lewis JA; Hersam MC
    Adv Mater; 2015 Nov; 27(42):6683-8. PubMed ID: 26422363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics.
    Kralj M; Krivačić S; Ivanišević I; Zubak M; Supina A; Marciuš M; Halasz I; Kassal P
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing.
    Das SR; Srinivasan S; Stromberg LR; He Q; Garland N; Straszheim WE; Ajayan PM; Balasubramanian G; Claussen JC
    Nanoscale; 2017 Dec; 9(48):19058-19065. PubMed ID: 29119163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics.
    Liao Y; Zhang R; Wang H; Ye S; Zhou Y; Ma T; Zhu J; Pfefferle LD; Qian J
    RSC Adv; 2019 May; 9(27):15184-15189. PubMed ID: 35514818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light.
    Rosen YS; Yakushenko A; Offenhäusser A; Magdassi S
    ACS Omega; 2017 Feb; 2(2):573-581. PubMed ID: 31457455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals.
    Paglia F; Vak D; van Embden J; Chesman AS; Martucci A; Jasieniak JJ; Della Gaspera E
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25473-8. PubMed ID: 26503740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive nanomaterials for 2D and 3D printed flexible electronics.
    Kamyshny A; Magdassi S
    Chem Soc Rev; 2019 Mar; 48(6):1712-1740. PubMed ID: 30569917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.