BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28820431)

  • 1. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization.
    Rodríguez-Escribano D; de Salas F; Pardo I; Camarero S
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28820431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass.
    Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S
    BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases.
    Pardo I; Camarero S
    Methods Mol Biol; 2018; 1685():247-254. PubMed ID: 29086313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates.
    Gillgren T; Hedenström M; Jönsson LJ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):438-446. PubMed ID: 28711620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants.
    Pardo I; Camarero S
    Molecules; 2015 Sep; 20(9):15929-43. PubMed ID: 26364626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis.
    Areskogh D; Li J; Gellerstedt G; Henriksson G
    Biomacromolecules; 2010 Apr; 11(4):904-10. PubMed ID: 20175586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions.
    Moya R; Saastamoinen P; Hernández M; Suurnäkki A; Arias E; Mattinen ML
    Bioresour Technol; 2011 Nov; 102(21):10006-12. PubMed ID: 21908186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of wet-resistant lignosulfonate-starch adhesives.
    Jimenez Bartolome M; Schwaiger N; Flicker R; Seidl B; Kozich M; Nyanhongo GS; Guebitz GM
    N Biotechnol; 2022 Jul; 69():49-54. PubMed ID: 35339699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-scavenging coatings and films based on lignosulfonates and laccase.
    Johansson K; Winestrand S; Johansson C; Järnström L; Jönsson LJ
    J Biotechnol; 2012 Sep; 161(1):14-8. PubMed ID: 22721759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccase activity measurement by FTIR spectral fingerprinting.
    Perna V; Baum A; Ernst HA; Agger JW; Meyer AS
    Enzyme Microb Technol; 2019 Mar; 122():64-73. PubMed ID: 30638509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolymerization of biorefinery lignin by improved laccases of the white-rot fungus Obba rivulosa.
    Wallenius J; Kontro J; Lyra C; Kuuskeri J; Wan X; Kähkönen MA; Baig I; Kamer PCJ; Sipilä J; Mäkelä MR; Nousiainen P; Hildén K
    Microb Biotechnol; 2021 Sep; 14(5):2140-2151. PubMed ID: 34310858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.
    Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M
    J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering platforms for directed evolution of Laccase from Pycnoporus cinnabarinus.
    Camarero S; Pardo I; Cañas AI; Molina P; Record E; Martínez AT; Martínez MJ; Alcalde M
    Appl Environ Microbiol; 2012 Mar; 78(5):1370-84. PubMed ID: 22210206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of chimeric laccases by directed evolution.
    Pardo I; Vicente AI; Mate DM; Alcalde M; Camarero S
    Biotechnol Bioeng; 2012 Dec; 109(12):2978-86. PubMed ID: 22729887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Engineering Approaches to Enhance Fungal Laccase Production in
    Aza P; de Salas F; Molpeceres G; Rodríguez-Escribano D; de la Fuente I; Camarero S
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.
    Larsson S; Cassland P; Jönsson LJ
    Appl Environ Microbiol; 2001 Mar; 67(3):1163-70. PubMed ID: 11229906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionated Lignosulfonates for Laccase-Catalyzed Oxygen-Scavenging Films and Coatings.
    Winestrand S; Järnström L; Jönsson LJ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.