BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28820431)

  • 21. A novel, simple screening method for investigating the properties of lignin oxidative activity.
    Tonin F; Vignali E; Pollegioni L; D'Arrigo P; Rosini E
    Enzyme Microb Technol; 2017 Jan; 96():143-150. PubMed ID: 27871375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates.
    Marzullo L; Cannio R; Giardina P; Santini MT; Sannia G
    J Biol Chem; 1995 Feb; 270(8):3823-7. PubMed ID: 7876125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic Oxidation of Ca-Lignosulfonate and Kraft Lignin in Different Lignin-Laccase-Mediator-Systems and MDF Production.
    Euring M; Ostendorf K; Rühl M; Kües U
    Front Bioeng Biotechnol; 2021; 9():788622. PubMed ID: 35155404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase.
    Eggert C; Temp U; Dean JF; Eriksson KE
    FEBS Lett; 1996 Aug; 391(1-2):144-8. PubMed ID: 8706903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can laccases catalyze bond cleavage in lignin?
    Munk L; Sitarz AK; Kalyani DC; Mikkelsen JD; Meyer AS
    Biotechnol Adv; 2015; 33(1):13-24. PubMed ID: 25560931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolved α-factor prepro-leaders for directed laccase evolution in Saccharomyces cerevisiae.
    Mateljak I; Tron T; Alcalde M
    Microb Biotechnol; 2017 Nov; 10(6):1830-1836. PubMed ID: 28805314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of small laccases from Streptomyces in lignin degradation.
    Majumdar S; Lukk T; Solbiati JO; Bauer S; Nair SK; Cronan JE; Gerlt JA
    Biochemistry; 2014 Jun; 53(24):4047-58. PubMed ID: 24870309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.
    Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH
    FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation.
    Lahtinen M; Kruus K; Heinonen P; Sipilä J
    J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications.
    Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A
    J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secretory Production of the
    Kang J; La TV; Kim MJ; Bae JH; Sung BH; Kim S; Sohn JH
    J Microbiol Biotechnol; 2024 Apr; 34(4):930-939. PubMed ID: 38314447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases.
    Alcalde M; Bulter T; Arnold FH
    J Biomol Screen; 2002 Dec; 7(6):547-53. PubMed ID: 14599353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.
    Otto B; Beuchel C; Liers C; Reisser W; Harms H; Schlosser D
    FEMS Microbiol Lett; 2015 Jun; 362(11):. PubMed ID: 25926529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional expression of a blood tolerant laccase in Pichia pastoris.
    Mate DM; Gonzalez-Perez D; Kittl R; Ludwig R; Alcalde M
    BMC Biotechnol; 2013 Apr; 13():38. PubMed ID: 23627343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production.
    Díaz R; Saparrat MC; Jurado M; García-Romera I; Ocampo JA; Martínez MJ
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):133-42. PubMed ID: 20607234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomedical and Pharmaceutical-Related Applications of Laccases.
    Mohit E; Tabarzad M; Faramarzi MA
    Curr Protein Pept Sci; 2020; 21(1):78-98. PubMed ID: 31660814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro evolution of a fungal laccase in high concentrations of organic cosolvents.
    Zumárraga M; Bulter T; Shleev S; Polaina J; Martínez-Arias A; Plou FJ; Ballesteros A; Alcalde M
    Chem Biol; 2007 Sep; 14(9):1052-64. PubMed ID: 17884637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.