These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28820953)
21. The role of fructose 1,6-bisphosphate-mediated glycolysis/gluconeogenesis genes in cancer prognosis. Li CH; Chan MH; Chang YC Aging (Albany NY); 2022 Apr; 14(7):3233-3258. PubMed ID: 35404841 [TBL] [Abstract][Full Text] [Related]
22. A fluorescent-based high-throughput screening assay for small molecules that inhibit the interaction of MdmX with p53. Tsuganezawa K; Nakagawa Y; Kato M; Taruya S; Takahashi F; Endoh M; Utata R; Mori M; Ogawa N; Honma T; Yokoyama S; Hashizume Y; Aoki M; Kasai T; Kigawa T; Kojima H; Okabe T; Nagano T; Tanaka A J Biomol Screen; 2013 Feb; 18(2):191-8. PubMed ID: 22989451 [TBL] [Abstract][Full Text] [Related]
23. High expression of fructose-bisphosphate aldolase A induces progression of renal cell carcinoma. Huang Z; Hua Y; Tian Y; Qin C; Qian J; Bao M; Liu Y; Wang S; Cao Q; Ju X; Wang Z; Gu M Oncol Rep; 2018 Jun; 39(6):2996-3006. PubMed ID: 29693182 [TBL] [Abstract][Full Text] [Related]
24. High-throughput screens for eEF-2 kinase. Devkota AK; Warthaka M; Edupuganti R; Tavares CD; Johnson WH; Ozpolat B; Cho EJ; Dalby KN J Biomol Screen; 2014 Mar; 19(3):445-52. PubMed ID: 24078616 [TBL] [Abstract][Full Text] [Related]
25. Enhanced Aerobic Glycolysis by S-Nitrosoglutathione via HIF-1α Associated GLUT1/Aldolase A Axis in Human Endothelial Cells. Yan J; Huang X; Zhu D; Lou Y J Cell Biochem; 2017 Aug; 118(8):2443-2453. PubMed ID: 28121054 [TBL] [Abstract][Full Text] [Related]
26. Nonenzymatic function of Aldolase A downregulates miR-145 to promote the Oct4/DUSP4/TRAF4 axis and the acquisition of lung cancer stemness. Chang YC; Yang YF; Chiou J; Tsai HF; Fang CY; Yang CJ; Chen CL; Hsiao M Cell Death Dis; 2020 Mar; 11(3):195. PubMed ID: 32188842 [TBL] [Abstract][Full Text] [Related]
27. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents. Yang H; Pinello CE; Luo J; Li D; Wang Y; Zhao LY; Jahn SC; Saldanha SA; Chase P; Planck J; Geary KR; Ma H; Law BK; Roush WR; Hodder P; Liao D Mol Cancer Ther; 2013 May; 12(5):610-20. PubMed ID: 23625935 [TBL] [Abstract][Full Text] [Related]
28. Fructose-1,6-bisphosphate aldolase A is involved in HaCaT cell migration by inducing lamellipodia formation. Tochio T; Tanaka H; Nakata S; Hosoya H J Dermatol Sci; 2010 May; 58(2):123-9. PubMed ID: 20362419 [TBL] [Abstract][Full Text] [Related]
29. Screening data from selected in vitro enzymatic systems. I. Standard test compounds from the Cancer Chemotherapy National Service Center. Ciaccio EI; Boxer GE; Devlin TM; Ford RT Cancer Res; 1967 Oct; 27(10 Pt 2):1033-69. PubMed ID: 6060155 [No Abstract] [Full Text] [Related]
30. Label-free high-throughput assays to screen and characterize novel lactate dehydrogenase inhibitors. Vanderporten E; Frick L; Turincio R; Thana P; Lamarr W; Liu Y Anal Biochem; 2013 Oct; 441(2):115-22. PubMed ID: 23871998 [TBL] [Abstract][Full Text] [Related]
31. Cheminformatics Based Machine Learning Approaches for Assessing Glycolytic Pathway Antagonists of Mycobacterium tuberculosis. Tiwari K; Jamal S; Grover S; Goyal S; Singh A; Grover A Comb Chem High Throughput Screen; 2016; 19(8):667-675. PubMed ID: 27291589 [TBL] [Abstract][Full Text] [Related]
32. Development of A Continuous Fluorescence-Based Assay for Ho YH; Chen L; Huang R Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435607 [No Abstract] [Full Text] [Related]
33. Aldolase A Accelerates Cancer Progression by Modulating mRNA Translation and Protein Biosynthesis via Noncanonical Mechanisms. Song J; Li H; Liu Y; Li X; Shi Q; Lei QY; Hu W; Huang S; Chen Z; He X Adv Sci (Weinh); 2023 Sep; 10(26):e2302425. PubMed ID: 37431681 [TBL] [Abstract][Full Text] [Related]
34. New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Ribeiro CJA; Kankanala J; Shi K; Kurahashi K; Kiselev E; Ravji A; Pommier Y; Aihara H; Wang Z Eur J Pharm Sci; 2018 Jun; 118():67-79. PubMed ID: 29574079 [TBL] [Abstract][Full Text] [Related]
35. miR-122-5p Inhibits the Proliferation, Invasion and Growth of Bile Duct Carcinoma Cells by Targeting ALDOA. Xu Z; Liu G; Zhang M; Zhang Z; Jia Y; Peng L; Zhu Y; Hu J; Huang R; Sun X Cell Physiol Biochem; 2018; 48(6):2596-2606. PubMed ID: 30121648 [TBL] [Abstract][Full Text] [Related]
36. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Fan-Minogue H; Bodapati S; Solow-Cordero D; Fan A; Paulmurugan R; Massoud TF; Felsher DW; Gambhir SS Mol Cancer Ther; 2013 Sep; 12(9):1896-905. PubMed ID: 23825064 [TBL] [Abstract][Full Text] [Related]
37. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. Li Q; Chen C; Kapadia A; Zhou Q; Harper MK; Schaack J; LaBarbera DV J Biomol Screen; 2011 Feb; 16(2):141-54. PubMed ID: 21297102 [TBL] [Abstract][Full Text] [Related]
38. A new non-radioactive deoxyhypusine synthase assay adaptable to high throughput screening. Park MH; Mandal A; Mandal S; Wolff EC Amino Acids; 2017 Nov; 49(11):1793-1804. PubMed ID: 28819816 [TBL] [Abstract][Full Text] [Related]
39. Apoptosis assays for quantifying the bioactivity of anticancer drug products. Brunelle JK; Zhang B Drug Resist Updat; 2010 Dec; 13(6):172-9. PubMed ID: 20947411 [TBL] [Abstract][Full Text] [Related]
40. Targeting the Type II Secretion System: Development, Optimization, and Validation of a High-Throughput Screen for the Identification of Small Molecule Inhibitors. Waack U; Johnson TL; Chedid K; Xi C; Simmons LA; Mobley HLT; Sandkvist M Front Cell Infect Microbiol; 2017; 7():380. PubMed ID: 28894700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]