BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28820974)

  • 1. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles.
    Bittar DB; Catelani TA; Pezza L; Pezza HR
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():221-226. PubMed ID: 28820974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric detection of Bi (III) in water and drug samples using pyridine-2,6-dicarboxylic acid modified silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():405-11. PubMed ID: 25919329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green-tea-synthesized silver nanoparticles as a sensing platform for determination of tetracycline in honey samples.
    Pistonesi DB; Centurión ME; Springer V
    J Sci Food Agric; 2021 Sep; 101(12):5182-5189. PubMed ID: 33608881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of diclofenac sodium by resonance light scattering method using silver nanoparticles as probe.
    Liu T; Xie Z; Liu Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():63-69. PubMed ID: 29660684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon.
    Wang CC; Luconi MO; Masi AN; Fernández LP
    Talanta; 2009 Jan; 77(3):1238-43. PubMed ID: 19064118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.
    Hosseini M; Mehrabi F; Ganjali MR; Norouzi P
    Luminescence; 2016 Nov; 31(7):1339-1343. PubMed ID: 26899385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticles as a new solid-phase adsorbent and its application to preconcentration and determination of lead from biological samples.
    Khajeh M; Sanchooli E
    Biol Trace Elem Res; 2011 Dec; 143(3):1856-64. PubMed ID: 21384144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid.
    Rastegarzadeh S; Hashemi F
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():536-41. PubMed ID: 24334017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions.
    Bamdad F; Khorram F; Samet M; Bamdad K; Sangi MR; Allahbakhshi F
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():52-7. PubMed ID: 26950501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles.
    Vaishnav SK; Patel K; Chandraker K; Korram J; Nagwanshi R; Ghosh KK; Satnami ML
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():155-162. PubMed ID: 28242444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A colorimetric probe to determine Pb(2+) using functionalized silver nanoparticles.
    Noh KC; Nam YS; Lee HJ; Lee KB
    Analyst; 2015 Dec; 140(24):8209-16. PubMed ID: 26555436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent.
    Morones JR; Frey W
    Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe.
    Li N; Gu Y; Gao M; Wang Z; Xiao D; Li Y; Lin R; He H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():328-33. PubMed ID: 25615678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.
    Kumar N; Kumar H; Mann B; Seth R
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity.
    Bhui DK; Misra A
    Carbohydr Polym; 2012 Jul; 89(3):830-5. PubMed ID: 24750868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of lead traces in honey using a fluorimetric method.
    Talio MC; Muñoz V; Acosta M; Fernández LP
    Food Chem; 2019 Nov; 298():125049. PubMed ID: 31260998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic wastewaters treatment by electrocoagulation to remove silver nanoparticles produced by different routes.
    Matias MS; Melegari SP; Vicentini DS; Matias WG; Ricordel C; Hauchard D
    J Environ Manage; 2015 Aug; 159():147-157. PubMed ID: 26067896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.
    Sachdeva V; Hooda V
    Int J Biol Macromol; 2015 Aug; 79():240-7. PubMed ID: 25957718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.