These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 28821025)
1. Fabrication and characterization of water-dispersed chitosan nanofiber/poly(ethylene glycol) diacrylate/calcium phosphate-based porous composites. Nitta S; Komatsu A; Ishii T; Ohnishi M; Inoue A; Iwamoto H Carbohydr Polym; 2017 Oct; 174():1034-1040. PubMed ID: 28821025 [TBL] [Abstract][Full Text] [Related]
2. Stereolithographic fabrication of three-dimensional permeable scaffolds from CaP/PEGDA hydrogel biocomposites for use as bone grafts. Tikhonov A; Evdokimov P; Klimashina E; Tikhonova S; Karpushkin E; Scherbackov I; Dubrov V; Putlayev V J Mech Behav Biomed Mater; 2020 Oct; 110():103922. PubMed ID: 32957218 [TBL] [Abstract][Full Text] [Related]
3. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Leeuwenburgh SC; Jansen JA; Mikos AG J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519 [TBL] [Abstract][Full Text] [Related]
4. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. Nejadnik MR; Mikos AG; Jansen JA; Leeuwenburgh SC J Biomed Mater Res A; 2012 May; 100(5):1316-23. PubMed ID: 22374694 [TBL] [Abstract][Full Text] [Related]
5. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Lin G; Cosimbescu L; Karin NJ; Tarasevich BJ Biomed Mater; 2012 Apr; 7(2):024107. PubMed ID: 22456931 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
7. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH. Ito T; Sasaki M; Taguchi T Biomed Mater; 2015 Mar; 10(1):015025. PubMed ID: 25730608 [TBL] [Abstract][Full Text] [Related]
8. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
9. Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol). Teng J; Yang B; Zhang LQ; Lin SQ; Xu L; Zhong GJ; Tang JH; Li ZM Carbohydr Polym; 2018 Jan; 179():244-251. PubMed ID: 29111048 [TBL] [Abstract][Full Text] [Related]
10. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Moeinzadeh S; Barati D; He X; Jabbari E Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902 [TBL] [Abstract][Full Text] [Related]
11. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Douglas TE; Krawczyk G; Pamula E; Declercq HA; Schaubroeck D; Bucko MM; Balcaen L; Van Der Voort P; Bliznuk V; van den Vreken NM; Dash M; Detsch R; Boccaccini AR; Vanhaecke F; Cornelissen M; Dubruel P J Tissue Eng Regen Med; 2016 Nov; 10(11):938-954. PubMed ID: 24616374 [TBL] [Abstract][Full Text] [Related]
12. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process. Escudero-Castellanos A; Ocampo-García BE; Domínguez-García MV; Flores-Estrada J; Flores-Merino MV J Mater Sci Mater Med; 2016 Dec; 27(12):176. PubMed ID: 27752974 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679 [TBL] [Abstract][Full Text] [Related]
17. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
18. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Kinneberg KR; Nelson A; Stender ME; Aziz AH; Mozdzen LC; Harley BA; Bryant SJ; Ferguson VL Ann Biomed Eng; 2015 Nov; 43(11):2618-29. PubMed ID: 26001970 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers. Falco EE; Coates EE; Li E; Roth JS; Fisher JP J Biomed Mater Res A; 2011 Jun; 97(3):264-71. PubMed ID: 21442727 [TBL] [Abstract][Full Text] [Related]
20. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]