These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28821045)

  • 1. Production of cellulose nanofibers using phenolic enhanced surface oxidation.
    Beheshti Tabar I; Zhang X; Youngblood JP; Mosier NS
    Carbohydr Polym; 2017 Oct; 174():120-127. PubMed ID: 28821045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels.
    Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z
    Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of TEMPO by ClO
    Pääkkönen T; Pönni R; Dou J; Nuopponen M; Vuorinen T
    Carbohydr Polym; 2017 Oct; 174():524-530. PubMed ID: 28821100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxylated cellulose nanocrystal films with tunable chiroptical properties.
    Fan W; Li J; Wei L; Xu Y
    Carbohydr Polym; 2022 Aug; 289():119442. PubMed ID: 35483855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature stability of nanocellulose dispersions.
    Heggset EB; Chinga-Carrasco G; Syverud K
    Carbohydr Polym; 2017 Feb; 157():114-121. PubMed ID: 27987816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction.
    Li W; Zhang Y; Li J; Zhou Y; Li R; Zhou W
    Carbohydr Polym; 2015 Nov; 132():513-9. PubMed ID: 26256377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure characteristics, solution properties and morphology of oxidized yeast β-glucans derived from controlled TEMPO-mediated oxidation.
    Ma H; Huang Q; Ren J; Zheng Z; Xiao Y
    Carbohydr Polym; 2020 Dec; 250():116924. PubMed ID: 33049838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: Fabrication, characterization, and antibacterial activity.
    Pereira AGB; Fajardo AR; Gerola AP; Rodrigues JHS; Nakamura CV; Muniz EC; Hsieh YL
    Carbohydr Polym; 2020 Dec; 250():116954. PubMed ID: 33049859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances.
    Khoshnevisan K; Maleki H; Samadian H; Shahsavari S; Sarrafzadeh MH; Larijani B; Dorkoosh FA; Haghpanah V; Khorramizadeh MR
    Carbohydr Polym; 2018 Oct; 198():131-141. PubMed ID: 30092983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements.
    Jahed E; Khaledabad MA; Almasi H; Hasanzadeh R
    Carbohydr Polym; 2017 May; 164():325-338. PubMed ID: 28325333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing triple-network cellulose nanofiber hydrogels with excellent strength, toughness and conductivity for real-time monitoring of human movements.
    Wu J; Ma Q; Pang Q; Hu S; Wan Z; Peng X; Cheng X; Geng L
    Carbohydr Polym; 2023 Dec; 321():121282. PubMed ID: 37739523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylan-degrading enzymes from Aspergillus terreus: Physicochemical features and functional studies on hydrolysis of cellulose pulp.
    Moreira LR; Álvares Ada C; da Silva FG; de Freitas SM; Ferreira Filho EX
    Carbohydr Polym; 2015 Dec; 134():700-8. PubMed ID: 26428175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning.
    Yang Y; Li W; Yu DG; Wang G; Williams GR; Zhang Z
    Carbohydr Polym; 2019 Jan; 203():228-237. PubMed ID: 30318208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).
    Ma M; Mu T; Sun H; Zhang M; Chen J; Yan Z
    Food Chem; 2015 Jul; 179():270-7. PubMed ID: 25722165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites.
    Luz EPCG; Chaves PHS; Vieira LAP; Ribeiro SF; Borges MF; Andrade FK; Muniz CR; Infantes-Molina A; Rodríguez-Castellón E; Rosa MF; Vieira RS
    Carbohydr Polym; 2020 Jun; 237():116174. PubMed ID: 32241452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boronate-immobilized cellulose nanofiber-reinforced cellulose microspheres for pH-dependent adsorption of glycoproteins.
    Li S; Qiao L; Liang C; Zhao L; Du K
    Carbohydr Polym; 2022 Dec; 298():120068. PubMed ID: 36241267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry.
    Haleem N; Arshad M; Shahid M; Tahir MA
    Carbohydr Polym; 2014 Nov; 113():249-55. PubMed ID: 25256482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.