BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28821073)

  • 21. Exploring xylan removal via enzymatic post-treatment to tailor the properties of cellulose nanofibrils for packaging film applications.
    Las-Casas B; Arantes V
    Int J Biol Macromol; 2024 Jun; 274(Pt 2):133325. PubMed ID: 38908627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking.
    Sanchez-Salvador JL; Balea A; Negro C; Monte MC; Blanco A
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments.
    Li P; Sirviö JA; Haapala A; Liimatainen H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2846-2855. PubMed ID: 27997111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.
    Arvidsson R; Nguyen D; Svanström M
    Environ Sci Technol; 2015 Jun; 49(11):6881-90. PubMed ID: 25938258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A; Singh M
    Carbohydr Res; 2011 Jan; 346(1):76-85. PubMed ID: 21094489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microemulsion systems for fiber deconstruction into cellulose nanofibrils.
    Carrillo CA; Laine J; Rojas OJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22622-7. PubMed ID: 25454578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis.
    Sanchez-Salvador JL; Campano C; Lopez-Exposito P; Tarrés Q; Mutjé P; Delgado-Aguilar M; Monte MC; Blanco A
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endo-Exoglucanase Synergism for Cellulose Nanofibril Production Assessment and Characterization.
    Ramírez Brenes RG; Chaves LDS; Bojorge N; Pereira N
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties.
    Ghasemi S; Tajvidi M; Bousfield DW; Gardner DJ; Gramlich WM
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing.
    Filipova I; Fridrihsone V; Cabulis U; Berzins A
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30134631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils.
    Gu J; Hsieh YL
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation.
    Liimatainen H; Suopajärvi T; Sirviö J; Hormi O; Niinimäki J
    Carbohydr Polym; 2014 Mar; 103():187-92. PubMed ID: 24528718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology.
    Claro FC; Matos M; Jordão C; Avelino F; Lomonaco D; Magalhães WLE
    Carbohydr Polym; 2019 Aug; 218():307-314. PubMed ID: 31221335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength.
    Fneich F; Ville J; Seantier B; Aubry T
    Carbohydr Polym; 2019 May; 211():315-321. PubMed ID: 30824095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.