These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28821073)

  • 41. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review on the Application of Nanocellulose in Cementitious Materials.
    Guo A; Sun Z; Sathitsuksanoh N; Feng H
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33321839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs.
    Torres-Rendon JG; Köpf M; Gehlen D; Blaeser A; Fischer H; De Laporte L; Walther A
    Biomacromolecules; 2016 Mar; 17(3):905-13. PubMed ID: 26812393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging Nanocellulose Technologies: Recent Developments.
    Isogai A
    Adv Mater; 2021 Jul; 33(28):e2000630. PubMed ID: 32686197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles.
    Nechyporchuk O; Bordes R; Köhnke T
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):39069-39077. PubMed ID: 29028306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions.
    Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X
    Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1.
    Jonasson S; Bünder A; Berglund L; Niittylä T; Oksman K
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning.
    Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials.
    Pinkl S; Veigel S; Colson J; Gindl-Altmutter W
    Polymers (Basel); 2017 Jul; 9(8):. PubMed ID: 30971001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils.
    Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H
    Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the potential of using nanocellulose for consolidation of painting canvases.
    Nechyporchuk O; Kolman K; Bridarolli A; Odlyha M; Bozec L; Oriola M; Campo-Francés G; Persson M; Holmberg K; Bordes R
    Carbohydr Polym; 2018 Aug; 194():161-169. PubMed ID: 29801824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation.
    Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A
    Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.
    Valle-Delgado JJ; Johansson LS; Österberg M
    Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape-recovering nanocellulose networks: Preparation, characterization and modeling.
    Cortes Ruiz MF; Brusentsev Y; Lindström SB; Xu C; Wågberg L
    Carbohydr Polym; 2023 Sep; 315():120950. PubMed ID: 37230608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anomalous-Diffusion-Assisted Brightness in White Cellulose Nanofibril Membranes.
    Toivonen MS; Onelli OD; Jacucci G; Lovikka V; Rojas OJ; Ikkala O; Vignolini S
    Adv Mater; 2018 Apr; 30(16):e1704050. PubMed ID: 29532967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial adhesion to polyvinylamine-modified nanocellulose films.
    Henschen J; Larsson PA; Illergård J; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2017 Mar; 151():224-231. PubMed ID: 28013166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fit-for-Use Nanofibrillated Cellulose from Recovered Paper.
    Balea A; Monte MC; Fuente E; Sanchez-Salvador JL; Tarrés Q; Mutjé P; Delgado-Aguilar M; Negro C
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimizing lignocellulosic nanofibril dimensions and morphology by mechanical refining for enhanced adhesion.
    Kelly PV; Gardner DJ; Gramlich WM
    Carbohydr Polym; 2021 Dec; 273():118566. PubMed ID: 34560977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laminated Wallboard Panels Made with Cellulose Nanofibrils as a Binder: Production and Properties.
    Hafez I; Tajvidi M
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.