These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28821073)

  • 61. Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiata kraft pulp fibers.
    Chinga-Carrasco G; Yu Y; Diserud O
    Microsc Microanal; 2011 Aug; 17(4):563-71. PubMed ID: 21740618
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization and properties of hybrid foams from nanocellulose and kaolin-microfibrillated cellulose composite.
    González-Ugarte AS; Hafez I; Tajvidi M
    Sci Rep; 2020 Oct; 10(1):17459. PubMed ID: 33060619
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics.
    Yang J; Xu F; Han CR
    Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials.
    Ghanadpour M; Carosio F; Larsson PT; Wågberg L
    Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379
    [TBL] [Abstract][Full Text] [Related]  

  • 65. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.
    Dimic-Misic K; Hummel M; Paltakari J; Sixta H; Maloney T; Gane P
    J Colloid Interface Sci; 2015 May; 446():31-43. PubMed ID: 25656557
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanofibrillated cellulose as an additive in papermaking process: A review.
    Boufi S; González I; Delgado-Aguilar M; Tarrès Q; Pèlach MÀ; Mutjé P
    Carbohydr Polym; 2016 Dec; 154():151-66. PubMed ID: 27577906
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream.
    Wang Q; Zhu JY; Considine JM
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2527-34. PubMed ID: 23473973
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents.
    Ferguson A; Khan U; Walsh M; Lee KY; Bismarck A; Shaffer MS; Coleman JN; Bergin SD
    Biomacromolecules; 2016 May; 17(5):1845-53. PubMed ID: 27007744
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.
    Singh M; Kaushik A; Ahuja D
    Carbohydr Polym; 2016 Oct; 150():48-56. PubMed ID: 27312612
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization.
    Cherian BM; Pothan LA; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S
    J Agric Food Chem; 2008 Jul; 56(14):5617-27. PubMed ID: 18570426
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessing cellulose nanofiber production from olive tree pruning residue.
    Fillat Ú; Wicklein B; Martín-Sampedro R; Ibarra D; Ruiz-Hitzky E; Valencia C; Sarrión A; Castro E; Eugenio ME
    Carbohydr Polym; 2018 Jan; 179():252-261. PubMed ID: 29111049
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties.
    Fortunati E; Luzi F; Jiménez A; Gopakumar DA; Puglia D; Thomas S; Kenny JM; Chiralt A; Torre L
    Carbohydr Polym; 2016 Sep; 149():357-68. PubMed ID: 27261760
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli.
    Dong H; Snyder JF; Williams KS; Andzelm JW
    Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparation and properties of microfibrillated cellulose with different carboxyethyl content.
    Chen JH; Liu JG; Su YQ; Xu ZH; Li MC; Ying RF; Wu JQ
    Carbohydr Polym; 2019 Feb; 206():616-624. PubMed ID: 30553365
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers.
    Benítez AJ; Walther A
    Biomacromolecules; 2017 May; 18(5):1642-1653. PubMed ID: 28351134
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cellulose nanofibrils aerogels generated from jute fibers.
    Lin J; Yu L; Tian F; Zhao N; Li X; Bian F; Wang J
    Carbohydr Polym; 2014 Aug; 109():35-43. PubMed ID: 24815398
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.
    He M; Cho BU; Won JM
    Carbohydr Polym; 2016 Jan; 136():820-5. PubMed ID: 26572417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.