These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28821079)

  • 1. Highly monodisperse colloidal coacervates based on a bioactive lactose-modified chitosan: From synthesis to characterization.
    Furlani F; Sacco P; Marsich E; Donati I; Paoletti S
    Carbohydr Polym; 2017 Oct; 174():360-368. PubMed ID: 28821079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Coacervates between a Lactose-Modified Chitosan and Hyaluronic Acid as Radical-Scavenging Drug Carriers.
    Vecchies F; Sacco P; Decleva E; Menegazzi R; Porrelli D; Donati I; Turco G; Paoletti S; Marsich E
    Biomacromolecules; 2018 Oct; 19(10):3936-3944. PubMed ID: 30204431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates.
    Furlani F; Parisse P; Sacco P
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions.
    Kaloti M; Bohidar HB
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):165-73. PubMed ID: 20674298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates.
    Vecchies F; Sacco P; Marsich E; Cinelli G; Lopez F; Donati I
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32294992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.
    Kayitmazer AB; Strand SP; Tribet C; Jaeger W; Dubin PL
    Biomacromolecules; 2007 Nov; 8(11):3568-77. PubMed ID: 17892297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex coacervation of soybean protein isolate and chitosan.
    Huang GQ; Sun YT; Xiao JX; Yang J
    Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monovalent salt enhances colloidal stability during the formation of chitosan/tripolyphosphate microgels.
    Huang Y; Lapitsky Y
    Langmuir; 2011 Sep; 27(17):10392-9. PubMed ID: 21749043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability Enhancement of Freeze-Dried Gelatin/Alginate Coacervates for bFGF Delivery.
    Lee J; Ban E; Park H; Kim A
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(allylamine)/tripolyphosphate coacervates enable high loading and multiple-month release of weakly amphiphilic anionic drugs: an
    de Silva UK; Brown JL; Lapitsky Y
    RSC Adv; 2018 May; 8(35):19409-19419. PubMed ID: 35540986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field pea protein isolate/chitosan complex coacervates: Formation and characterization.
    Zhang Q; Dong H; Gao J; Chen L; Vasanthan T
    Carbohydr Polym; 2020 Dec; 250():116925. PubMed ID: 33049839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers.
    Sacco P; Paoletti S; Cok M; Asaro F; Abrami M; Grassi M; Donati I
    Int J Biol Macromol; 2016 Nov; 92():476-483. PubMed ID: 27431794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of chitosan-tripolyphosphate fibers through pH dependent ionotropic gelation.
    Pati F; Adhikari B; Dhara S
    Carbohydr Res; 2011 Nov; 346(16):2582-8. PubMed ID: 21962591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of lipase-loaded particles by coacervation with chitosan.
    Liu YW; Zhou Y; Huang GQ; Guo LP; Li XD; Xiao JX
    Food Chem; 2022 Aug; 385():132689. PubMed ID: 35303653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Carbohydr Polym; 2013 May; 94(2):940-5. PubMed ID: 23544653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.
    Lawrence PG; Lapitsky Y
    Langmuir; 2015 Feb; 31(4):1564-74. PubMed ID: 25569307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery.
    Ma L; Liu C
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):448-53. PubMed ID: 19819676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments.
    Wu Y; Wu J; Cao J; Zhang Y; Xu Z; Qin X; Wang W; Yuan Z
    Eur J Pharm Biopharm; 2017 Mar; 112():148-154. PubMed ID: 27890571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.