These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28821145)

  • 21. Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride.
    Lv F; Wang C; Zhu P; Zhang C
    Carbohydr Polym; 2015 Jun; 123():424-31. PubMed ID: 25843876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Glucose and Coagulant on the Structure and Properties of Regenerated Cellulose Fibers.
    Wei J; Wang B; Yuan H; Kang Z; Gao H; Nie Y
    Biomacromolecules; 2023 Apr; 24(4):1810-1818. PubMed ID: 36867861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles.
    Jeihanipour A; Karimi K; Niklasson C; Taherzadeh MJ
    Waste Manag; 2010 Dec; 30(12):2504-9. PubMed ID: 20692142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Market assessment to improve fibre recycling within the EU textile sector.
    Boschmeier E; Ipsmiller W; Bartl A
    Waste Manag Res; 2024 Feb; 42(2):135-145. PubMed ID: 37313862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-based polymer colorants from nonaqueous reactive dyeing of regenerated cellulose for plastics and textiles.
    Zhao J; Ding L; Sui X; Mao Z; Xu H; Zhong Y; Zhang L; Chen Z; Wang B
    Carbohydr Polym; 2019 Feb; 206():734-741. PubMed ID: 30553379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Natural Fibre-Reinforced Semi-Finished Products with Bio-Based Matrix for Eco-Friendly Composites.
    Möhl C; Weimer T; Caliskan M; Baz S; Bauder HJ; Gresser GT
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers.
    Wang B; Nie Y; Kang Z; Liu X
    Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-loop recycling of end-of-life textiles as geopolymer fibre reinforcement.
    Ambrus M; Mucsi G
    Waste Manag Res; 2024 Apr; ():734242X241242708. PubMed ID: 38576348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green Production of Regenerated Cellulose/Boron Nitride Nanosheet Textiles for Static and Dynamic Personal Cooling.
    Wu K; Yu L; Lei C; Huang J; Liu D; Liu Y; Xie Y; Chen F; Fu Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40685-40693. PubMed ID: 31599152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.
    Sun X; Lu C; Zhang W; Tian D; Zhang X
    Carbohydr Polym; 2013 Oct; 98(1):405-11. PubMed ID: 23987361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication.
    Xia G; Zhou Q; Xu Z; Zhang J; Zhang J; Wang J; You J; Wang Y; Nawaz H
    Carbohydr Polym; 2021 Dec; 273():118569. PubMed ID: 34560980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method.
    Shi S; Zhang M; Ling C; Hou W; Yan Z
    Waste Manag; 2018 Dec; 82():139-146. PubMed ID: 30509575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable and cleaner production of elastic core-spun yarns for stretch denim with maximal utilization of recycled cotton extracted from pre-consumer fabric waste.
    Uddin AJ; Rahman M
    Heliyon; 2024 Feb; 10(4):e25444. PubMed ID: 38375276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.
    Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ
    Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of Ioncell-F fibres from birch wood.
    Asaadi S; Hummel M; Ahvenainen P; Gubitosi M; Olsson U; Sixta H
    Carbohydr Polym; 2018 Feb; 181():893-901. PubMed ID: 29254051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste.
    Montava-Jordà S; Torres-Giner S; Ferrandiz-Bou S; Quiles-Carrillo L; Montanes N
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30893806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery.
    Orasugh JT; Saha NR; Sarkar G; Rana D; Mondal D; Ghosh SK; Chattopadhyay D
    Int J Biol Macromol; 2018 Apr; 109():1246-1252. PubMed ID: 29169944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends.
    Navone L; Moffitt K; Hansen KA; Blinco J; Payne A; Speight R
    Waste Manag; 2020 Feb; 102():149-160. PubMed ID: 31678801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of cellulose textile fibers.
    Mäkelä M; Rissanen M; Sixta H
    Analyst; 2021 Dec; 146(24):7503-7509. PubMed ID: 34766958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.