These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28821212)
1. Characterization of syntrophic Geobacter communities using ToF-SIMS. Wei W; Zhang Y; Komorek R; Plymale A; Yu R; Wang B; Zhu Z; Liu F; Yu XY Biointerphases; 2017 Aug; 12(5):05G601. PubMed ID: 28821212 [TBL] [Abstract][Full Text] [Related]
2. In Vivo Molecular Insights into Syntrophic Wei W; Plymale A; Zhu Z; Ma X; Liu F; Yu XY Anal Chem; 2020 Aug; 92(15):10402-10411. PubMed ID: 32614167 [TBL] [Abstract][Full Text] [Related]
3. Peak selection matters in principal component analysis: A case study of syntrophic microbes. Yang C; Wei W; Liu F; Yu XY Biointerphases; 2019 Sep; 14(5):051004. PubMed ID: 31554406 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite. Zheng S; Liu F; Li M; Xiao L; Wang O Sci China Life Sci; 2018 Jul; 61(7):787-798. PubMed ID: 29101585 [TBL] [Abstract][Full Text] [Related]
5. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Rotaru AE; Shrestha PM; Liu F; Ueki T; Nevin K; Summers ZM; Lovley DR Appl Environ Microbiol; 2012 Nov; 78(21):7645-51. PubMed ID: 22923399 [TBL] [Abstract][Full Text] [Related]
6. Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics. Semenec L; Laloo AE; Schulz BL; Vergara IA; Bond PL; Franks AE Bioelectrochemistry; 2018 Feb; 119():150-160. PubMed ID: 28992596 [TBL] [Abstract][Full Text] [Related]
7. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Summers ZM; Fogarty HE; Leang C; Franks AE; Malvankar NS; Lovley DR Science; 2010 Dec; 330(6009):1413-5. PubMed ID: 21127257 [TBL] [Abstract][Full Text] [Related]
8. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nagarajan H; Embree M; Rotaru AE; Shrestha PM; Feist AM; Palsson BØ; Lovley DR; Zengler K Nat Commun; 2013; 4():2809. PubMed ID: 24264237 [TBL] [Abstract][Full Text] [Related]
9. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Chen S; Rotaru AE; Liu F; Philips J; Woodard TL; Nevin KP; Lovley DR Bioresour Technol; 2014 Dec; 173():82-86. PubMed ID: 25285763 [TBL] [Abstract][Full Text] [Related]
10. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. Liu X; Zhuo S; Rensing C; Zhou S ISME J; 2018 Sep; 12(9):2142-2151. PubMed ID: 29875437 [TBL] [Abstract][Full Text] [Related]
11. In Situ Spectroelectrochemical Characterization Reveals Cytochrome-Mediated Electric Syntrophy in Liu X; Zhan J; Liu L; Gan F; Ye J; Nealson KH; Rensing C; Zhou S Environ Sci Technol; 2021 Jul; 55(14):10142-10151. PubMed ID: 34196176 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture. Huang L; Liu X; Ye Y; Chen M; Zhou S Environ Microbiol; 2020 Jan; 22(1):243-254. PubMed ID: 31657092 [TBL] [Abstract][Full Text] [Related]
13. Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Jiménez Otero F; Chadwick GL; Yates MD; Mickol RL; Saunders SH; Glaven SM; Gralnick JA; Newman DK; Tender LM; Orphan VJ; Bond DR Appl Environ Microbiol; 2021 Aug; 87(17):e0070621. PubMed ID: 34190605 [TBL] [Abstract][Full Text] [Related]
14. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor. Hedrick DB; Peacock AD; Lovley DR; Woodard TL; Nevin KP; Long PE; White DC J Ind Microbiol Biotechnol; 2009 Feb; 36(2):205-9. PubMed ID: 18846396 [TBL] [Abstract][Full Text] [Related]
15. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures. Flayac C; Trably E; Bernet N Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632 [TBL] [Abstract][Full Text] [Related]
16. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Shrestha PM; Rotaru AE; Aklujkar M; Liu F; Shrestha M; Summers ZM; Malvankar N; Flores DC; Lovley DR Environ Microbiol Rep; 2013 Dec; 5(6):904-10. PubMed ID: 24249299 [TBL] [Abstract][Full Text] [Related]
17. Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa. Semenec L; Vergara IA; Laloo AE; Petrovski S; Bond PL; Franks AE mBio; 2020 Apr; 11(2):. PubMed ID: 32265334 [TBL] [Abstract][Full Text] [Related]
18. Zheng S; Liu F; Wang B; Zhang Y; Lovley DR Environ Sci Technol; 2020 Dec; 54(23):15347-15354. PubMed ID: 33205658 [TBL] [Abstract][Full Text] [Related]
19. Syntrophic Growth of Wan Y; Zhou L; Wang S; Liao C; Li N; Liu W; Wang X Front Microbiol; 2018; 9():1572. PubMed ID: 30065708 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii. Huang L; Liu X; Tang J; Yu L; Zhou S Bioelectrochemistry; 2019 Jun; 127():21-25. PubMed ID: 30641310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]