These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28821650)
1. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator. Rotstein HG; Schneider E; Szczupak L J Neurosci; 2017 Sep; 37(38):9149-9159. PubMed ID: 28821650 [TBL] [Abstract][Full Text] [Related]
2. Phase-Specific Motor Efference during a Rhythmic Motor Pattern. Alonso I; Sanchez Merlinsky A; Szczupak L J Neurosci; 2020 Feb; 40(9):1888-1896. PubMed ID: 31980584 [TBL] [Abstract][Full Text] [Related]
3. Dopamine activates the motor pattern for crawling in the medicinal leech. Puhl JG; Mesce KA J Neurosci; 2008 Apr; 28(16):4192-200. PubMed ID: 18417698 [TBL] [Abstract][Full Text] [Related]
4. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech. Crisp KM; Mesce KA J Exp Biol; 2004 Dec; 207(Pt 26):4535-42. PubMed ID: 15579549 [TBL] [Abstract][Full Text] [Related]
5. Interneuronal and motor patterns during crawling behavior of semi-intact leeches. Baader AP J Exp Biol; 1997 May; 200(Pt 9):1369-81. PubMed ID: 9172419 [TBL] [Abstract][Full Text] [Related]
7. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012 [TBL] [Abstract][Full Text] [Related]
8. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity. Roberts A; Perrins R J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822 [TBL] [Abstract][Full Text] [Related]
9. Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. Guzulaitis R; Hounsgaard J J Neurosci; 2017 Sep; 37(38):9239-9248. PubMed ID: 28842417 [TBL] [Abstract][Full Text] [Related]
10. Pattern-generating role for motoneurons in a rhythmically active neuronal network. Staras K; Kemenes G; Benjamin PR J Neurosci; 1998 May; 18(10):3669-88. PubMed ID: 9570798 [TBL] [Abstract][Full Text] [Related]
11. A central pattern generator underlies crawling in the medicinal leech. Eisenhart FJ; Cacciatore TW; Kristan WB J Comp Physiol A; 2000; 186(7-8):631-43. PubMed ID: 11016780 [TBL] [Abstract][Full Text] [Related]
12. Motoneuronal Regulation of Central Pattern Generator and Network Function. Falgairolle M; O'Donovan MJ Adv Neurobiol; 2022; 28():259-280. PubMed ID: 36066829 [TBL] [Abstract][Full Text] [Related]
13. Neuronal Circuits That Control Rhythmic Pectoral Fin Movements in Zebrafish. Uemura Y; Kato K; Kawakami K; Kimura Y; Oda Y; Higashijima SI J Neurosci; 2020 Aug; 40(35):6678-6690. PubMed ID: 32703904 [TBL] [Abstract][Full Text] [Related]
14. Heartbeat control in leeches. II. Fictive motor pattern. Wenning A; Hill AA; Calabrese RL J Neurophysiol; 2004 Jan; 91(1):397-409. PubMed ID: 13679405 [TBL] [Abstract][Full Text] [Related]
15. Neuronal generation of the leech swimming movement. Stent GS; Kristan WB; Friesen WO; Ort CA; Poon M; Calabrese RL Science; 1978 Jun; 200(4348):1348-57. PubMed ID: 663615 [TBL] [Abstract][Full Text] [Related]
16. Effect of a nonspiking neuron on motor patterns of the leech. Rodriguez MJ; Alvarez RJ; Szczupak L J Neurophysiol; 2012 Apr; 107(7):1917-24. PubMed ID: 22236711 [TBL] [Abstract][Full Text] [Related]
17. Kinematics and modeling of leech crawling: evidence for an oscillatory behavior produced by propagating waves of excitation. Cacciatore TW; Rozenshteyn R; Kristan WB J Neurosci; 2000 Feb; 20(4):1643-55. PubMed ID: 10662854 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons. Crisp KM; Gallagher BR; Mesce KA J Exp Biol; 2012 Sep; 215(Pt 17):3028-36. PubMed ID: 22660774 [TBL] [Abstract][Full Text] [Related]
19. Biological clockwork underlying adaptive rhythmic movements. Iwasaki T; Chen J; Friesen WO Proc Natl Acad Sci U S A; 2014 Jan; 111(3):978-83. PubMed ID: 24395788 [TBL] [Abstract][Full Text] [Related]
20. Intersegmental Interactions Give Rise to a Global Network. Kearney G; Radice M; Merlinsky AS; Szczupak L Front Neural Circuits; 2022; 16():843731. PubMed ID: 35282329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]