BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 28821651)

  • 1. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G
    J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase in NREM sleep slow waves following injections of sodium oxybate in the mouse cerebral cortex and the role of somatostatin-positive interneurons.
    Spano GM; Cavelli M; Marshall W; Tononi G; Cirelli C
    Eur J Neurosci; 2024 Feb; 59(4):502-525. PubMed ID: 36226638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control.
    Anaclet C; De Luca R; Venner A; Malyshevskaya O; Lazarus M; Arrigoni E; Fuller PM
    J Neurosci; 2018 May; 38(22):5168-5181. PubMed ID: 29735555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep.
    Funk CM; Honjoh S; Rodriguez AV; Cirelli C; Tononi G
    Curr Biol; 2016 Feb; 26(3):396-403. PubMed ID: 26804554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition.
    Niethard N; Hasegawa M; Itokazu T; Oyanedel CN; Born J; Sato TR
    Curr Biol; 2016 Oct; 26(20):2739-2749. PubMed ID: 27693142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infraslow coordination of slow wave activity through altered neuronal synchrony.
    Dash MB
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31353415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics.
    Mondino A; Hambrecht-Wiedbusch VS; Li D; York AK; Pal D; González J; Torterolo P; Mashour GA; Vanini G
    J Neurosci; 2021 Apr; 41(15):3462-3478. PubMed ID: 33664133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus.
    Honjoh S; Sasai S; Schiereck SS; Nagai H; Tononi G; Cirelli C
    Nat Commun; 2018 May; 9(1):2100. PubMed ID: 29844415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits.
    Yavorska I; Wehr M
    Front Neural Circuits; 2016; 10():76. PubMed ID: 27746722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Delta Waves In Human Rapid Eye Movement Sleep.
    Bernardi G; Betta M; Ricciardi E; Pietrini P; Tononi G; Siclari F
    J Neurosci; 2019 Apr; 39(14):2686-2697. PubMed ID: 30737310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by Somatostatin Interneurons in Olfactory Cortex.
    Large AM; Kunz NA; Mielo SL; Oswald AM
    Front Neural Circuits; 2016; 10():62. PubMed ID: 27582691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity.
    Morairty SR; Dittrich L; Pasumarthi RK; Valladao D; Heiss JE; Gerashchenko D; Kilduff TS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20272-7. PubMed ID: 24191004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells.
    Xu X; Roby KD; Callaway EM
    J Comp Neurol; 2010 Feb; 518(3):389-404. PubMed ID: 19950390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers.
    Kuki T; Fujihara K; Miwa H; Tamamaki N; Yanagawa Y; Mushiake H
    Front Neural Circuits; 2015; 9():6. PubMed ID: 25691859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways.
    Vaidyanathan TV; Collard M; Yokoyama S; Reitman ME; Poskanzer KE
    Elife; 2021 Mar; 10():. PubMed ID: 33729913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.