These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 28821652)

  • 1. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.
    Liang J; Li JL; Han Y; Luo YX; Xue YX; Zhang Y; Zhang Y; Zhang LB; Chen ML; Lu L; Shi J
    J Neurosci; 2017 Sep; 37(37):8938-8951. PubMed ID: 28821652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eIF2α dephosphorylation in basolateral amygdala mediates reconsolidation of drug memory.
    Jian M; Luo YX; Xue YX; Han Y; Shi HS; Liu JF; Yan W; Wu P; Meng SQ; Deng JH; Shen HW; Shi J; Lu L
    J Neurosci; 2014 Jul; 34(30):10010-21. PubMed ID: 25057203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.
    Ding ZB; Wu P; Luo YX; Shi HS; Shen HW; Wang SJ; Lu L
    Psychopharmacology (Berl); 2013 Aug; 228(3):427-37. PubMed ID: 23494234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infralimbic GluN2A-Containing NMDA Receptors Modulate Reconsolidation of Cocaine Self-Administration Memory.
    Hafenbreidel M; Rafa Todd C; Mueller D
    Neuropsychopharmacology; 2017 Apr; 42(5):1113-1125. PubMed ID: 28042872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory.
    Ren ZY; Liu MM; Xue YX; Ding ZB; Xue LF; Zhai SD; Lu L
    Neuropsychopharmacology; 2013 Apr; 38(5):778-90. PubMed ID: 23303053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of GSK3β induced by recall of cocaine reward memories is dependent on GluN2A/B NMDA receptor signaling.
    Shi X; von Weltin E; Barr JL; Unterwald EM
    J Neurochem; 2019 Oct; 151(1):91-102. PubMed ID: 31361029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats.
    Lin J; Liu L; Wen Q; Zheng C; Gao Y; Peng S; Tan Y; Li Y
    Int J Neuropsychopharmacol; 2014 Jan; 17(1):127-36. PubMed ID: 24103337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CB1 Receptor Signaling Modulates Amygdalar Plasticity during Context-Cocaine Memory Reconsolidation to Promote Subsequent Cocaine Seeking.
    Higginbotham JA; Wang R; Richardson BD; Shiina H; Tan SM; Presker MA; Rossi DJ; Fuchs RA
    J Neurosci; 2021 Jan; 41(4):613-629. PubMed ID: 33257326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of actin polymerization in the NAc shell inhibits morphine-induced CPP by disrupting its reconsolidation.
    Li G; Wang Y; Yan M; Xu Y; Song X; Li Q; Zhang J; Ma H; Wu Y
    Sci Rep; 2015 Nov; 5():16283. PubMed ID: 26538334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.
    Li Y; Ge S; Li N; Chen L; Zhang S; Wang J; Wu H; Wang X; Wang X
    Neuroscience; 2016 Feb; 315():45-69. PubMed ID: 26674058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAc Shell Arc/Arg3.1 Protein Mediates Reconsolidation of Morphine CPP by Increased GluR1 Cell Surface Expression: Activation of ERK-Coupled CREB is Required.
    Lv XF; Sun LL; Cui CL; Han JS
    Int J Neuropsychopharmacol; 2015 Mar; 18(9):. PubMed ID: 25746394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glutamatergic insular-striatal projection regulates the reinstatement of cue-associated morphine-seeking behavior in mice.
    Zhang R; Jia W; Wang Y; Zhu Y; Liu F; Li B; Liu F; Wang H; Tan Q
    Brain Res Bull; 2019 Oct; 152():257-264. PubMed ID: 31351159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation.
    Zhu H; Zhou Y; Liu Z; Chen X; Li Y; Liu X; Ma L
    Int J Neuropsychopharmacol; 2018 Mar; 21(3):267-280. PubMed ID: 29216351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation.
    Théberge FR; Milton AL; Belin D; Lee JL; Everitt BJ
    Learn Mem; 2010 Sep; 17(9):444-53. PubMed ID: 20802017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate receptor interacting protein acts within the prefrontal cortex to blunt cocaine seeking.
    Wickens MM; Deutschmann AU; McGrath AG; Parikh V; Briand LA
    Neuropharmacology; 2019 Oct; 157():107672. PubMed ID: 31233823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory.
    Li YQ; Xue YX; He YY; Li FQ; Xue LF; Xu CM; Sacktor TC; Shaham Y; Lu L
    J Neurosci; 2011 Apr; 31(14):5436-46. PubMed ID: 21471379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference.
    Lv XF; Xu Y; Han JS; Cui CL
    Behav Brain Res; 2011 Sep; 223(1):182-91. PubMed ID: 21549764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory.
    Wu P; Xue YX; Ding ZB; Xue LF; Xu CM; Lu L
    J Neurochem; 2011 Jul; 118(1):113-25. PubMed ID: 21592120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories.
    Fricks-Gleason AN; Marshall JF
    Learn Mem; 2008 Sep; 15(9):643-8. PubMed ID: 18772251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dnmt3a2 in the Nucleus Accumbens Shell Is Required for Reinstatement of Cocaine Seeking.
    Cannella N; Oliveira AMM; Hemstedt T; Lissek T; Buechler E; Bading H; Spanagel R
    J Neurosci; 2018 Aug; 38(34):7516-7528. PubMed ID: 30030395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.