These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28821773)

  • 1. A patterned single layer graphene resistance temperature sensor.
    Davaji B; Cho HD; Malakoutian M; Lee JK; Panin G; Kang TW; Lee CH
    Sci Rep; 2017 Aug; 7(1):8811. PubMed ID: 28821773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoelectromechanical Temperature Sensor Based on Piezoresistive Properties of Suspended Graphene Film.
    Han S; Zhou S; Mei L; Guo M; Zhang H; Li Q; Zhang S; Niu Y; Zhuang Y; Geng W; Bi K; Chou X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors.
    Chen YM; He SM; Huang CH; Huang CC; Shih WP; Chu CL; Kong J; Li J; Su CY
    Nanoscale; 2016 Feb; 8(6):3555-64. PubMed ID: 26805513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal-Resistance Effect of Graphene at High Temperatures in Nanoelectromechanical Temperature Sensors.
    Lei S; Su N; Li M
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of CVD-grown graphene for room temperature gas sensors.
    Rigoni F; Maiti R; Baratto C; Donarelli M; MacLeod J; Gupta B; Lyu M; Ponzoni A; Sberveglieri G; Motta N; Faglia G
    Nanotechnology; 2017 Oct; 28(41):414001. PubMed ID: 28805655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene.
    Wang H; Kurata K; Fukunaga T; Takamatsu H; Zhang X; Ikuta T; Takahashi K; Nishiyama T; Ago H; Takata Y
    Sci Rep; 2016 Feb; 6():21823. PubMed ID: 26906476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Surface Modifications to Single and Multilayer Graphene Temperature Coefficient of Resistance.
    Torres J; Liu Y; So S; Yi H; Park S; Lee JK; Lim SC; Yun M
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48890-48898. PubMed ID: 32985174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Characteristics of a Pressure Sensor Based on BN/Graphene/BN Heterostructure.
    Li M; Zhang T; Wang P; Li M; Wang J; Liu Z
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene "microdrums" on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors.
    Wang Q; Hong W; Dong L
    Nanoscale; 2016 Apr; 8(14):7663-71. PubMed ID: 26988111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application.
    Lukose R; Zurauskiene N; Balevicius S; Stankevic V; Keršulis S; Plausinaitiene V; Navickas R
    Nanotechnology; 2019 Aug; 30(35):355503. PubMed ID: 31067515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.
    Hong J; Lee S; Seo J; Pyo S; Kim J; Lee T
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3554-61. PubMed ID: 25632798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene.
    Chen J; Zhang G; Li B
    Nanoscale; 2013 Jan; 5(2):532-6. PubMed ID: 23223896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Metal Composite Sensors with Near-Zero Temperature Coefficient of Resistance.
    Marin BC; Root SE; Urbina AD; Aklile E; Miller R; Zaretski AV; Lipomi DJ
    ACS Omega; 2017 Feb; 2(2):626-630. PubMed ID: 28261691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing.
    Rajan G; Morgan JJ; Murphy C; Torres Alonso E; Wade J; Ott AK; Russo S; Alves H; Craciun MF; Neves AIS
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29861-29867. PubMed ID: 32506900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-layer graphene pirani pressure sensors.
    Romijn J; Dolleman RJ; Singh M; van der Zant HSJ; Steeneken PG; Sarro PM; Vollebregt S
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Based Temperature Sensors-Comparison of the Temperature and Humidity Dependences.
    Štulík J; Musil O; Josefík F; Kadlec P
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene as an atomically thin barrier to Cu diffusion into Si.
    Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T
    Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics.
    Nguyen P; Behura SK; Seacrist MR; Berry V
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26517-26525. PubMed ID: 30009598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.