BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28821825)

  • 1. Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening.
    Aspitarte L; McCulley DR; Bertoni A; Island JO; Ostermann M; Rontani M; Steele GA; Minot ED
    Sci Rep; 2017 Aug; 7(1):8828. PubMed ID: 28821825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-induced band gap renormalization in semiconducting carbon nanotubes.
    Lanzillo NA; Kharche N; Nayak SK
    Sci Rep; 2014 Jan; 4():3609. PubMed ID: 24402238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of electron orbital magnetic moments in carbon nanotubes.
    Minot ED; Yaish Y; Sazonova V; McEuen PL
    Nature; 2004 Apr; 428(6982):536-9. PubMed ID: 15057825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalization of carbon nanotubes with -CH(n), -NH(n) fragments, -COOH and -OH groups.
    Milowska KZ; Majewski JA
    J Chem Phys; 2013 May; 138(19):194704. PubMed ID: 23697427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Investigation of Chirality-Based Separation of Carbon Nanotubes Using Tripeptide Library.
    Singh S; Divecha HR; Ayoola A; Xavierselvan M; Devlin J; Macwan I
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric-Screening Reduction-Induced Large Transport Gap in Suspended Sub-10 nm Graphene Nanoribbon Functional Devices.
    Schmidt ME; Muruganathan M; Kanzaki T; Iwasaki T; Hammam AMM; Suzuki S; Ogawa S; Mizuta H
    Small; 2019 Nov; 15(46):e1903025. PubMed ID: 31573772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport properties of silicon and carbon nanotubes at the atomic scale: a first-principles study.
    Ma T; Wen S; Yan L; Wu C; Zhang C; Zhang M; Su Z
    Phys Chem Chem Phys; 2016 Aug; 18(34):23643-50. PubMed ID: 27510551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties.
    Li R; Qing Y; Zhao J; Huang S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directly correlating the strain-induced electronic property change to the chirality of individual single-walled and few-walled carbon nanotubes.
    Ning Z; Chen Q; Wei J; Zhang R; Ye L; Wei X; Fu M; Guo Y; Bai X; Wei F
    Nanoscale; 2015 Aug; 7(30):13116-24. PubMed ID: 26176661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic properties of carbon nanotubes complexed with a DNA nucleotide.
    Chehelamirani M; da Silva MC; Salahub DR
    Phys Chem Chem Phys; 2017 Mar; 19(10):7333-7342. PubMed ID: 28239719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jul; 24(26):8030-8037. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium coated with functionalized carbon nanotubes--a promising novel material for biomedical application as an implantable orthopaedic electronic device.
    Przekora A; Benko A; Nocun M; Wyrwa J; Blazewicz M; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():287-96. PubMed ID: 25491831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Nitrogen Doping on X-band Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites.
    Arjmand M; Sundararaj U
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17844-50. PubMed ID: 26218098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal features of quantized thermal conductance of carbon nanotubes.
    Yamamoto T; Watanabe S; Watanabe K
    Phys Rev Lett; 2004 Feb; 92(7):075502. PubMed ID: 14995867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.
    Kahmann S; Salazar Rios JM; Zink M; Allard S; Scherf U; Dos Santos MC; Brabec CJ; Loi MA
    J Phys Chem Lett; 2017 Nov; 8(22):5666-5672. PubMed ID: 29099192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature effects in the band structure of carbon nanotubes including spin-orbit coupling.
    Liu H; Heinze D; Duc HT; Schumacher S; Meier T
    J Phys Condens Matter; 2015 Nov; 27(44):445501. PubMed ID: 26451898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure and field emission of multiwalled carbon nanotubes depending on growth temperature.
    Yoon SW; Kim SY; Park J; Park CJ; Lee CJ
    J Phys Chem B; 2005 Nov; 109(43):20403-6. PubMed ID: 16853640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Tunable Electronic Structures of Phosphorene/Carbon Nanotube Heterostructures through External Electric Field and Atomic Intercalation.
    Tian XQ; Wang XR; Wei YD; Liu L; Gong ZR; Gu J; Du Y; Yakobson BI
    Nano Lett; 2017 Dec; 17(12):7995-8004. PubMed ID: 29191020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band-Gap-Dependent Electronic Compressibility of Carbon Nanotubes in the Wigner Crystal Regime.
    Lotfizadeh N; McCulley DR; Senger MJ; Fu H; Minot ED; Skinner B; Deshpande VV
    Phys Rev Lett; 2019 Nov; 123(19):197701. PubMed ID: 31765201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.