These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

790 related articles for article (PubMed ID: 28821953)

  • 1. Astrocyte and Alzheimer's disease.
    Cai Z; Wan CQ; Liu Z
    J Neurol; 2017 Oct; 264(10):2068-2074. PubMed ID: 28821953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A
    Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G protein-coupled receptor kinases are associated with Alzheimer's disease pathology.
    Guimarães TR; Swanson E; Kofler J; Thathiah A
    Neuropathol Appl Neurobiol; 2021 Dec; 47(7):942-957. PubMed ID: 34164834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model.
    Hurtado DE; Molina-Porcel L; Iba M; Aboagye AK; Paul SM; Trojanowski JQ; Lee VM
    Am J Pathol; 2010 Oct; 177(4):1977-88. PubMed ID: 20802182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease.
    Takahashi RH; Nagao T; Gouras GK
    Pathol Int; 2017 Apr; 67(4):185-193. PubMed ID: 28261941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein aggregation in Alzheimer's disease: Aβ and τ and their potential roles in the pathogenesis of AD.
    Thal DR; Fändrich M
    Acta Neuropathol; 2015 Feb; 129(2):163-5. PubMed ID: 25600324
    [No Abstract]   [Full Text] [Related]  

  • 7. Neurofibrillary Tangles of Aβx-40 in Alzheimer's Disease Brains.
    Lacosta AM; Insua D; Badi H; Pesini P; Sarasa M
    J Alzheimers Dis; 2017; 58(3):661-667. PubMed ID: 28453491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viewpoint: Crosstalks between neurofibrillary tangles and amyloid plaque formation.
    Luan K; Rosales JL; Lee KY
    Ageing Res Rev; 2013 Jan; 12(1):174-81. PubMed ID: 22728532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased tauopathy drives microglia-mediated clearance of beta-amyloid.
    Chen W; Abud EA; Yeung ST; Lakatos A; Nassi T; Wang J; Blum D; Buée L; Poon WW; Blurton-Jones M
    Acta Neuropathol Commun; 2016 Jun; 4(1):63. PubMed ID: 27339073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer's disease and the brain of aged dogs with cognitive dysfunction.
    Yu CH; Song GS; Yhee JY; Kim JH; Im KS; Nho WG; Lee JH; Sur JH
    J Comp Pathol; 2011 Jul; 145(1):45-58. PubMed ID: 21256508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of insulin resistance in Alzheimer's disease.
    Cai Z; Xiao M; Chang L; Yan LJ
    Metab Brain Dis; 2015 Aug; 30(4):839-51. PubMed ID: 25399337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse models of Alzheimer's disease: the long and filamentous road.
    Phinney AL; Horne P; Yang J; Janus C; Bergeron C; Westaway D
    Neurol Res; 2003 Sep; 25(6):590-600. PubMed ID: 14503012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain.
    Kobayashi E; Nakano M; Kubota K; Himuro N; Mizoguchi S; Chikenji T; Otani M; Mizue Y; Nagaishi K; Fujimiya M
    Sci Rep; 2018 Jan; 8(1):1712. PubMed ID: 29374250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis.
    Bloom GS
    JAMA Neurol; 2014 Apr; 71(4):505-8. PubMed ID: 24493463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of TREM2 in Alzheimer's Disease and its Consequences on β- Amyloid, Tau and Neurofibrillary Tangles.
    Singh AK; Mishra G; Maurya A; Awasthi R; Kumari K; Thakur A; Rai A; Rai GK; Sharma B; Kulkarni GT; Singh SK
    Curr Alzheimer Res; 2019; 16(13):1216-1229. PubMed ID: 31481003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease.
    Jeong S
    Mol Cells; 2017 Sep; 40(9):613-620. PubMed ID: 28927263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brainstem tau pathology in Alzheimer's disease is characterized by increase of three repeat tau and independent of amyloid β.
    Uematsu M; Nakamura A; Ebashi M; Hirokawa K; Takahashi R; Uchihara T
    Acta Neuropathol Commun; 2018 Jan; 6(1):1. PubMed ID: 29298724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurofibrillary tangle formation by introducing wild-type human tau into APP transgenic mice.
    Umeda T; Maekawa S; Kimura T; Takashima A; Tomiyama T; Mori H
    Acta Neuropathol; 2014 May; 127(5):685-98. PubMed ID: 24531886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofibrillary tangles and beta-amyloid deposits in Alzheimer's disease.
    Goedert M; Sisodia SS; Price DL
    Curr Opin Neurobiol; 1991 Oct; 1(3):441-7. PubMed ID: 1821689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pathological changes induced by amyloid-β in Alzheimer's disease].
    Takata K; Kitamura Y; Taniguchi T
    Yakugaku Zasshi; 2011 Jan; 131(1):3-11. PubMed ID: 21212607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.