These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28822121)

  • 1. Investigating the origin of acoustic attenuation in liquid foams.
    Pierre J; Gaulon C; Derec C; Elias F; Leroy V
    Eur Phys J E Soft Matter; 2017 Aug; 40(8):73. PubMed ID: 28822121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.
    Monloubou M; Bruning MA; Saint-Jalmes A; Dollet B; Cantat I
    Soft Matter; 2016 Sep; 12(38):8015-8024. PubMed ID: 27714324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic characterisation of liquid foams with an impedance tube.
    Pierre J; Guillermic RM; Elias F; Drenckhan W; Leroy V
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):113. PubMed ID: 24122276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
    Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions.
    Tcholakova S; Denkov ND; Golemanov K; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011405. PubMed ID: 18763954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelasticity of liquid organic foam: relaxations, temporal dependence, and bubble loading effects on flow behavior.
    Kropka JM; Celina M
    J Chem Phys; 2010 Jul; 133(2):024904. PubMed ID: 20632773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscous friction of squeezed bubbly liquid layers.
    Morini R; Chateau X; Ovarlez G; Pitois O; Tocquer L
    Soft Matter; 2018 Nov; 14(41):8372-8377. PubMed ID: 30307014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and non-linear wall friction of wet foams.
    Le Merrer M; Lespiat R; Höhler R; Cohen-Addad S
    Soft Matter; 2015 Jan; 11(2):368-81. PubMed ID: 25387164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound transmission through monodisperse 2D microfoams.
    Champougny L; Pierre J; Devulder A; Leroy V; Jullien MC
    Eur Phys J E Soft Matter; 2019 Jan; 42(1):6. PubMed ID: 30659393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interpretation of shear viscosity ultrasonic measurements.
    Gitis M
    Ultrasonics; 2019 Mar; 93():1-6. PubMed ID: 30384005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of milk foams produced by steam injection.
    Jimenez-Junca CA; Gumy JC; Sher A; Niranjan K
    J Food Sci; 2011; 76(9):E569-75. PubMed ID: 22416702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency sound transmission through a gas-liquid interface.
    Godin OA
    J Acoust Soc Am; 2008 Apr; 123(4):1866-79. PubMed ID: 18396996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bubble distributions on the propagation of linear waves in polydisperse bubbly liquids.
    Fan Y; Li H; Xu C; Zhou T
    J Acoust Soc Am; 2019 Jan; 145(1):16. PubMed ID: 30710962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.