These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28822125)

  • 1. In Vitro Alkylation Methods for Assessing the Protein Redox State.
    Zannini F; Couturier J; Keech O; Rouhier N
    Methods Mol Biol; 2017; 1653():51-64. PubMed ID: 28822125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging roles of protein glutathionylation in chloroplasts.
    Zaffagnini M; Bedhomme M; Lemaire SD; Trost P
    Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear thiol redox systems in plants.
    Delorme-Hinoux V; Bangash SA; Meyer AJ; Reichheld JP
    Plant Sci; 2016 Feb; 243():84-95. PubMed ID: 26795153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thioredoxin-mediated recycling of Arabidopsis thaliana GRXS16 relies on a conserved C-terminal cysteine.
    Zannini F; Moseler A; Bchini R; Dhalleine T; Meyer AJ; Rouhier N; Couturier J
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):426-436. PubMed ID: 30502392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione.
    Jung CH; Thomas JA
    Arch Biochem Biophys; 1996 Nov; 335(1):61-72. PubMed ID: 8914835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
    Marri L; Thieulin-Pardo G; Lebrun R; Puppo R; Zaffagnini M; Trost P; Gontero B; Sparla F
    Biochimie; 2014 Feb; 97():228-37. PubMed ID: 24211189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of thioredoxin and glutaredoxin target proteins by identifying reversibly oxidized cysteinyl residues.
    Lee HM; Dietz KJ; Hofestädt R
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin-1 and posttranslational modifications.
    Haendeler J
    Antioxid Redox Signal; 2006; 8(9-10):1723-8. PubMed ID: 16987024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Redox-Sensitive GFP Cysteine Redox State via Gel-Based Read-Out.
    Bohle F; Meyer AJ; Mueller-Schuessele SJ
    Methods Mol Biol; 2023; 2564():259-268. PubMed ID: 36107347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B.
    Vieira Dos Santos C; Laugier E; Tarrago L; Massot V; Issakidis-Bourguet E; Rouhier N; Rey P
    FEBS Lett; 2007 Sep; 581(23):4371-6. PubMed ID: 17761174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of thiol-based mechanisms in plant development.
    Rouhier N; Cerveau D; Couturier J; Reichheld JP; Rey P
    Biochim Biophys Acta; 2015 Aug; 1850(8):1479-96. PubMed ID: 25676896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.
    Morisse S; Michelet L; Bedhomme M; Marchand CH; Calvaresi M; Trost P; Fermani S; Zaffagnini M; Lemaire SD
    J Biol Chem; 2014 Oct; 289(43):30012-24. PubMed ID: 25202015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastidic phosphoglycerate kinase from Phaeodactylum tricornutum: on the critical role of cysteine residues for the enzyme function.
    Bosco MB; Aleanzi MC; Iglesias AÁ
    Protist; 2012 Mar; 163(2):188-203. PubMed ID: 21816671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells.
    González R; López-Grueso MJ; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2015 Dec; 6():122-134. PubMed ID: 26210445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli.
    Nakatani T; Ohtsu I; Nonaka G; Wiriyathanawudhiwong N; Morigasaki S; Takagi H
    Microb Cell Fact; 2012 May; 11():62. PubMed ID: 22607201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.
    Rouhier N; Gelhaye E; Gualberto JM; Jordy MN; De Fay E; Hirasawa M; Duplessis S; Lemaire SD; Frey P; Martin F; Manieri W; Knaff DB; Jacquot JP
    Plant Physiol; 2004 Mar; 134(3):1027-38. PubMed ID: 14976238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.