These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 28822129)
1. Targeted Isolation and Characterization of T-DNA Mutants Defective in Photorespiration. Timm S; Modde K; Bauwe H Methods Mol Biol; 2017; 1653():105-124. PubMed ID: 28822129 [TBL] [Abstract][Full Text] [Related]
2. Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits. de Oliveira Silva FM; de Ávila Silva L; Araújo WL; Zsögön A; Nunes-Nesi A Methods Mol Biol; 2017; 1653():125-135. PubMed ID: 28822130 [TBL] [Abstract][Full Text] [Related]
3. Measurement of Transcripts Associated with Photorespiration and Related Redox Signaling. Mhamdi A; Kerchev PI; Willems P; Noctor G; Van Breusegem F Methods Mol Biol; 2017; 1653():17-29. PubMed ID: 28822123 [TBL] [Abstract][Full Text] [Related]
4. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays. Peterson RB; Schultes NP; McHale NA; Zelitch I Plant Physiol; 2016 May; 171(1):125-38. PubMed ID: 27002061 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Photorespiratory Fluxes by Gas Exchange. Busch FA; Deans RM; Holloway-Phillips MM Methods Mol Biol; 2017; 1653():1-15. PubMed ID: 28822122 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis mutants by activation tagging in which photosynthesis genes are expressed in dedifferentiated calli. Niwa Y; Goto S; Nakano T; Sakaiya M; Hirano T; Tsukaya H; Komeda Y; Kobayashi H Plant Cell Physiol; 2006 Mar; 47(3):319-31. PubMed ID: 16597626 [TBL] [Abstract][Full Text] [Related]
7. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Cousins AB; Pracharoenwattana I; Zhou W; Smith SM; Badger MR Plant Physiol; 2008 Oct; 148(2):786-95. PubMed ID: 18685043 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth. Dellero Y; Lamothe-Sibold M; Jossier M; Hodges M Plant J; 2015 Sep; 83(6):1005-18. PubMed ID: 26216646 [TBL] [Abstract][Full Text] [Related]
10. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. Dellero Y; Jossier M; Glab N; Oury C; Tcherkez G; Hodges M J Exp Bot; 2016 May; 67(10):3149-63. PubMed ID: 26896850 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Lancien M; Martin M; Hsieh MH; Leustek T; Goodman H; Coruzzi GM Plant J; 2002 Feb; 29(3):347-58. PubMed ID: 11844111 [TBL] [Abstract][Full Text] [Related]
13. Current methods for estimating the rate of photorespiration in leaves. Busch FA Plant Biol (Stuttg); 2013 Jul; 15(4):648-55. PubMed ID: 23186383 [TBL] [Abstract][Full Text] [Related]
14. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator. Heckwolf M; Pater D; Hanson DT; Kaldenhoff R Plant J; 2011 Sep; 67(5):795-804. PubMed ID: 21564354 [TBL] [Abstract][Full Text] [Related]
15. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Izumi M; Tsunoda H; Suzuki Y; Makino A; Ishida H J Exp Bot; 2012 Mar; 63(5):2159-70. PubMed ID: 22223809 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Photorespiratory Intermediates Under Transient Conditions by Mass Spectrometry. Plett A; Westhoff P; Linka N Methods Mol Biol; 2024; 2792():187-194. PubMed ID: 38861088 [TBL] [Abstract][Full Text] [Related]
17. de Souza LP; Szecówka M; Fernie AR; Tohge T Methods Mol Biol; 2017; 1653():157-166. PubMed ID: 28822132 [TBL] [Abstract][Full Text] [Related]
18. Targeted Knockdown of GDCH in Rice Leads to a Photorespiratory-Deficient Phenotype Useful as a Building Block for C4 Rice. Lin H; Karki S; Coe RA; Bagha S; Khoshravesh R; Balahadia CP; Ver Sagun J; Tapia R; Israel WK; Montecillo F; de Luna A; Danila FR; Lazaro A; Realubit CM; Acoba MG; Sage TL; von Caemmerer S; Furbank RT; Cousins AB; Hibberd JM; Quick WP; Covshoff S Plant Cell Physiol; 2016 May; 57(5):919-32. PubMed ID: 26903527 [TBL] [Abstract][Full Text] [Related]
19. Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO Eisenhut M; Bräutigam A; Timm S; Florian A; Tohge T; Fernie AR; Bauwe H; Weber APM Mol Plant; 2017 Jan; 10(1):47-61. PubMed ID: 27702693 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis and fluorescence quenching, and the mRNA levels of plastidic glutamine synthetase or of mitochondrial serine hydroxymethyltransferase (SHMT) in the leaves of the wild-type and of the SHMT-deficient stm mutant of Arabidopsis thaliana in relation to the rate of photorespiration. Beckmann K; Dzuibany C; Biehler K; Fock H; Hell R; Migge A; Becker TW Planta; 1997; 202(3):379-86. PubMed ID: 9232907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]