These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models. Dufault-Thompson K; Steffensen JL; Zhang Y Methods Mol Biol; 2018; 1716():131-150. PubMed ID: 29222752 [TBL] [Abstract][Full Text] [Related]
23. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux. Liu L; Shen F; Xin C; Wang Z J Integr Plant Biol; 2016 Jan; 58(1):2-11. PubMed ID: 26010949 [TBL] [Abstract][Full Text] [Related]
24. Measurement of Transcripts Associated with Photorespiration and Related Redox Signaling. Mhamdi A; Kerchev PI; Willems P; Noctor G; Van Breusegem F Methods Mol Biol; 2017; 1653():17-29. PubMed ID: 28822123 [TBL] [Abstract][Full Text] [Related]
25. In vivo stoichiometry of photorespiratory metabolism. Abadie C; Boex-Fontvieille ER; Carroll AJ; Tcherkez G Nat Plants; 2016 Jan; 2():15220. PubMed ID: 27249192 [TBL] [Abstract][Full Text] [Related]
31. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model. André MJ Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764 [TBL] [Abstract][Full Text] [Related]
32. Identification of flux trade-offs in metabolic networks. Hashemi S; Razaghi-Moghadam Z; Nikoloski Z Sci Rep; 2021 Dec; 11(1):23776. PubMed ID: 34893666 [TBL] [Abstract][Full Text] [Related]
35. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. Hodges M; Dellero Y; Keech O; Betti M; Raghavendra AS; Sage R; Zhu XG; Allen DK; Weber AP J Exp Bot; 2016 May; 67(10):3015-26. PubMed ID: 27053720 [TBL] [Abstract][Full Text] [Related]
36. Two-Scale Ando D; Garcia Martin H Methods Mol Biol; 2018; 1671():333-352. PubMed ID: 29170969 [TBL] [Abstract][Full Text] [Related]
37. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Williams TC; Poolman MG; Howden AJ; Schwarzlander M; Fell DA; Ratcliffe RG; Sweetlove LJ Plant Physiol; 2010 Sep; 154(1):311-23. PubMed ID: 20605915 [TBL] [Abstract][Full Text] [Related]
38. Variability of metabolite levels is linked to differential metabolic pathways in Arabidopsis's responses to abiotic stresses. Töpfer N; Scossa F; Fernie A; Nikoloski Z PLoS Comput Biol; 2014 Jun; 10(6):e1003656. PubMed ID: 24946036 [TBL] [Abstract][Full Text] [Related]
39. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary Hendry JI; Prasannan C; Ma F; Möllers KB; Jaiswal D; Digmurti M; Allen DK; Frigaard NU; Dasgupta S; Wangikar PP Biotechnol Bioeng; 2017 Oct; 114(10):2298-2308. PubMed ID: 28600876 [TBL] [Abstract][Full Text] [Related]
40. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. Dellero Y; Jossier M; Glab N; Oury C; Tcherkez G; Hodges M J Exp Bot; 2016 May; 67(10):3149-63. PubMed ID: 26896850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]