BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28822219)

  • 1. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology.
    Belcastro E; Gaucher C; Corti A; Leroy P; Lartaud I; Pompella A
    Biol Chem; 2017 Nov; 398(12):1267-1293. PubMed ID: 28822219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences.
    MartĂ­nez-Ruiz A; Lamas S
    Cardiovasc Res; 2007 Jul; 75(2):220-8. PubMed ID: 17451659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; FrosalĂ­ S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress.
    Klatt P; Lamas S
    Eur J Biochem; 2000 Aug; 267(16):4928-44. PubMed ID: 10931175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of S-Nitrosation and S-Glutathionylation of the Human Branched-Chain Aminotransferase Proteins.
    Forshaw TE; Conway ME
    Methods Mol Biol; 2019; 1990():71-84. PubMed ID: 31148063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-nitrosation/denitrosation in cardiovascular pathologies: facts and concepts for the rational design of S-nitrosothiols.
    Gaucher C; Boudier A; Dahboul F; Parent M; Leroy P
    Curr Pharm Des; 2013; 19(3):458-72. PubMed ID: 22920903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cardiovascular cellular processes by S-nitrosylation.
    Schulman IH; Hare JM
    Biochim Biophys Acta; 2012 Jun; 1820(6):752-62. PubMed ID: 21536106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed?
    Keszler A; Zhang Y; Hogg N
    Free Radic Biol Med; 2010 Jan; 48(1):55-64. PubMed ID: 19819329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols.
    Handy DE; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1207-14. PubMed ID: 16543494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione.
    Giustarini D; Milzani A; Aldini G; Carini M; Rossi R; Dalle-Donne I
    Antioxid Redox Signal; 2005; 7(7-8):930-9. PubMed ID: 15998248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating the regulator: nitric oxide control of post-translational modifications.
    Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ
    New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.
    Nakamura T; Lipton SA
    Neurochem Res; 2016 Mar; 41(3):510-4. PubMed ID: 26118537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.
    Maron BA; Tang SS; Loscalzo J
    Antioxid Redox Signal; 2013 Jan; 18(3):270-87. PubMed ID: 22770551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein glutathionylation in cardiovascular diseases.
    Pastore A; Piemonte F
    Int J Mol Sci; 2013 Oct; 14(10):20845-76. PubMed ID: 24141185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The redox switch: dynamic regulation of protein function by cysteine modifications.
    Spadaro D; Yun BW; Spoel SH; Chu C; Wang YQ; Loake GJ
    Physiol Plant; 2010 Apr; 138(4):360-71. PubMed ID: 19912563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Protein Targets of
    Falco JA; Wynia-Smith SL; McCoy J; Smith BC; Weerapana E
    ACS Chem Biol; 2024 Jan; 19(1):193-207. PubMed ID: 38159293
    [No Abstract]   [Full Text] [Related]  

  • 20. Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols.
    Stoyanovsky DA; Tyurina YY; Tyurin VA; Anand D; Mandavia DN; Gius D; Ivanova J; Pitt B; Billiar TR; Kagan VE
    J Am Chem Soc; 2005 Nov; 127(45):15815-23. PubMed ID: 16277524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.