These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28822330)
1. Effect of the microstructure on the propagation velocity of ultrasound in magnetic powders. Botello FR; Quintanilla MAS; Castellanos A; Grekova EF; Tournat V Ultrasonics; 2018 Jan; 82():153-160. PubMed ID: 28822330 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic probing of cohesive granular media at very low consolidation. Botello FR; Castellanos A; Tournat V Ultrasonics; 2016 Jul; 69():193-200. PubMed ID: 26683655 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field. Bramantya MA; Motozawa M; Sawada T J Phys Condens Matter; 2010 Aug; 22(32):324102. PubMed ID: 21386478 [TBL] [Abstract][Full Text] [Related]
4. Influence of network topology on sound propagation in granular materials. Bassett DS; Owens ET; Daniels KE; Porter MA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041306. PubMed ID: 23214579 [TBL] [Abstract][Full Text] [Related]
5. Experimental measurements of ultrasonic propagation velocity and attenuation in a magnetic fluid. Motozawa M; Iizuka Y; Sawada T J Phys Condens Matter; 2008 May; 20(20):204117. PubMed ID: 21694246 [TBL] [Abstract][Full Text] [Related]
6. Magnetofluidization of fine magnetite powder. Valverde JM; Espin MJ; Quintanilla MA; Castellanos A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031306. PubMed ID: 19391934 [TBL] [Abstract][Full Text] [Related]
7. Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow: analysis by means of mean-field approximation for the two typical external magnetic field directions. Watanabe T; Aoshima M; Satoh A J Colloid Interface Sci; 2006 Oct; 302(1):347-55. PubMed ID: 16814313 [TBL] [Abstract][Full Text] [Related]
8. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid. Xu X; Wang Y; Wang Y Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413 [TBL] [Abstract][Full Text] [Related]
9. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves. Mézière F; Muller M; Dobigny B; Bossy E; Derode A J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084 [TBL] [Abstract][Full Text] [Related]
10. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion. Lambert SA; Näsholm SP; Nordsletten D; Michler C; Juge L; Serfaty JM; Bilston L; Guzina B; Holm S; Sinkus R Phys Rev Lett; 2015 Aug; 115(9):094301. PubMed ID: 26371655 [TBL] [Abstract][Full Text] [Related]
11. Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature. Mietta JL; Ruiz MM; Antonel PS; Perez OE; Butera A; Jorge G; Negri RM Langmuir; 2012 May; 28(17):6985-96. PubMed ID: 22475548 [TBL] [Abstract][Full Text] [Related]
12. Quantum oscillations in the high frequency magnetoacoustic response of a quasi-two-dimensional metal. Zimbovskaya NA; Gumbs G J Phys Condens Matter; 2009 Oct; 21(41):415703. PubMed ID: 21693996 [TBL] [Abstract][Full Text] [Related]
13. Highly nonlinear solitary waves in chains of ellipsoidal particles. Ngo D; Khatri D; Daraio C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026610. PubMed ID: 21929131 [TBL] [Abstract][Full Text] [Related]
14. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation. Holzinger D; Koch I; Burgard S; Ehresmann A ACS Nano; 2015 Jul; 9(7):7323-31. PubMed ID: 26134922 [TBL] [Abstract][Full Text] [Related]
15. Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation. Aoshima M; Satoh A; Chantrell RW J Colloid Interface Sci; 2008 Jul; 323(1):158-68. PubMed ID: 18452934 [TBL] [Abstract][Full Text] [Related]
16. Electromagnetic quantum waves and their effect on the low temperature magnetoacoustic response of a quasi-two-dimensional metal. Zimbovskaya NA J Phys Condens Matter; 2011 Jun; 23(21):215701. PubMed ID: 21558608 [TBL] [Abstract][Full Text] [Related]
17. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity. Merkel A; Tournat V; Gusev V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023206. PubMed ID: 25215842 [TBL] [Abstract][Full Text] [Related]
18. On the influence of spatial correlations on sound propagation in concentrated solutions of rigid particles. Baudoin M; Thomas JL; Coulouvrat F J Acoust Soc Am; 2008 Jun; 123(6):4127-39. PubMed ID: 18537364 [TBL] [Abstract][Full Text] [Related]
19. Anomalous Lattice Softening Near a Quantum Critical Point in a Transverse Ising Magnet. Matsuura K; Cong PT; Zherlitsyn S; Wosnitza J; Abe N; Arima TH Phys Rev Lett; 2020 Mar; 124(12):127205. PubMed ID: 32281847 [TBL] [Abstract][Full Text] [Related]
20. Ultrasound propagation in wet and airless non-consolidated granular materials. Griffiths S; Rescaglio A; Melo F Ultrasonics; 2010 Feb; 50(2):139-44. PubMed ID: 19854458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]