These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 28822489)
21. Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. Wang X; Liu X; Makalliwa GA; Li J; Wang H; Hu Z; Wang M Sci China Life Sci; 2017 Aug; 60(8):806-815. PubMed ID: 28755302 [TBL] [Abstract][Full Text] [Related]
22. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. Sackton TB Curr Opin Insect Sci; 2019 Feb; 31():106-113. PubMed ID: 31109663 [TBL] [Abstract][Full Text] [Related]
23. Beyond the spore--past and future developments of Bacillus thuringiensis as a biopesticide. Crickmore N J Appl Microbiol; 2006 Sep; 101(3):616-9. PubMed ID: 16907811 [TBL] [Abstract][Full Text] [Related]
24. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. Dubois T; Faegri K; Perchat S; Lemy C; Buisson C; Nielsen-LeRoux C; Gohar M; Jacques P; Ramarao N; Kolstø AB; Lereclus D PLoS Pathog; 2012; 8(4):e1002629. PubMed ID: 22511867 [TBL] [Abstract][Full Text] [Related]
25. Microbial biopesticides for control of invertebrates: Progress from New Zealand. Glare TR; O'Callaghan M J Invertebr Pathol; 2019 Jul; 165():82-88. PubMed ID: 29196233 [TBL] [Abstract][Full Text] [Related]
26. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis. Amichot M; Curty C; Benguettat-Magliano O; Gallet A; Wajnberg E Environ Sci Pollut Res Int; 2016 Feb; 23(4):3097-103. PubMed ID: 26590060 [TBL] [Abstract][Full Text] [Related]
28. Making pathogens sociable: the [corrected] emergence of high relatedness through limited host invasibility. van Leeuwen E; O'Neill S; Matthews A; Raymond B ISME J; 2015 Oct; 9(10):2315-23. PubMed ID: 26125685 [TBL] [Abstract][Full Text] [Related]
29. The use of fungal entomopathogens as endophytes in biological control: a review. Vega FE Mycologia; 2018; 110(1):4-30. PubMed ID: 29863999 [TBL] [Abstract][Full Text] [Related]
30. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Ying SH; Feng MG Virulence; 2019 Dec; 10(1):429-437. PubMed ID: 30257619 [TBL] [Abstract][Full Text] [Related]
31. The Insect Virome: Opportunities and Challenges. Bonning BC Curr Issues Mol Biol; 2020; 34():1-12. PubMed ID: 31167953 [TBL] [Abstract][Full Text] [Related]
32. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests]. Sauka DH; Benintende GB Rev Argent Microbiol; 2008; 40(2):124-40. PubMed ID: 18705497 [TBL] [Abstract][Full Text] [Related]
33. Coevolution of parasitic fungi and insect hosts. Joop G; Vilcinskas A Zoology (Jena); 2016 Aug; 119(4):350-8. PubMed ID: 27448694 [TBL] [Abstract][Full Text] [Related]
38. The physiological basis of disease tolerance in insects. Lissner MM; Schneider DS Curr Opin Insect Sci; 2018 Oct; 29():133-136. PubMed ID: 30551820 [TBL] [Abstract][Full Text] [Related]
39. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735 [TBL] [Abstract][Full Text] [Related]
40. Cross-talking between baculoviruses and host insects towards a successful infection. Wang M; Hu Z Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180324. PubMed ID: 30967030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]