These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28822573)

  • 1. Linear solvation energy relationships in normal phase chromatography based on gradient separations.
    Wu D; Lucy CA
    J Chromatogr A; 2017 Sep; 1516():64-70. PubMed ID: 28822573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the slope of the linear relationship between retention and mobile phase composition (Snyder-Soczewiñski model) in normal phase liquid chromatography with bonded and charge-transfer phases.
    Wu D; Lucy CA
    J Chromatogr A; 2016 Dec; 1475():31-40. PubMed ID: 27852455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of internal standards in reversed-phase liquid chromatography. 1. Initial study on predicting internal standards for use with neutral samples based on linear solvation energy relationships.
    Li J
    J Chromatogr A; 2001 Aug; 927(1-2):19-30. PubMed ID: 11572388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography.
    Wang A; Carr PW
    J Chromatogr A; 2002 Aug; 965(1-2):3-23. PubMed ID: 12236532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water. Part II: Model evaluation and benchmarking.
    Egert T; Langowski HC
    Eur J Pharm Sci; 2022 May; 172():106138. PubMed ID: 35122951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear solvation energy relationship (LSER) characterization of the normal phase retention mechanism on hypercrosslinked polystyrenes.
    Wu D; Jiang P; Lucy CA
    J Chromatogr A; 2018 Mar; 1543():40-47. PubMed ID: 29486887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear Solvation Energy Relationships as classifiers in non-target analysis--a capillary liquid chromatography approach.
    Ulrich N; Schüürmann G; Brack W
    J Chromatogr A; 2011 Nov; 1218(45):8192-6. PubMed ID: 21968343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of internal standards in reversed-phase liquid chromatography. II. Selectivity optimization and internal standard prediction for the quantitation of estradiol and levonorgestrel in a transdermal drug delivery formulation based on the linear solvation energy relationships.
    Li J; Shah DS
    J Chromatogr A; 2002 Apr; 954(1-2):159-71. PubMed ID: 12058900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression.
    D'Archivio AA; Maggi MA; Ruggieri F
    Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of gas chromatographic separations and estimation of distribution-centric retention parameters using linear solvation energy relationships.
    Brehmer T; Duong B; Boeker P; Wüst M; Leppert J
    J Chromatogr A; 2024 Feb; 1717():464665. PubMed ID: 38281342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention of ionizable compounds on high-performance liquid chromatography XI. Global linear solvation energy relationships for neutral and ionizable compounds.
    Espinosa S; Bosch E; Rosés M
    J Chromatogr A; 2002 Feb; 945(1-2):83-96. PubMed ID: 11860147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additional investigations into the retention mechanism of hydrophilic interaction liquid chromatography by linear solvation energy relationships.
    Schuster G; Lindner W
    J Chromatogr A; 2013 Aug; 1301():98-110. PubMed ID: 23791147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a modified linear solvation energy relationship (LSER) model to retention on a butylimidazolium-based column for high performance liquid chromatography.
    Fields PR; Sun Y; Stalcup AM
    J Chromatogr A; 2011 Jan; 1218(3):467-75. PubMed ID: 21168847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear solvation energy relationships as classifier in non-target analysis--an approach for isocratic liquid chromatography.
    Ulrich N; Mühlenberg J; Schüürmann G; Brack W
    J Chromatogr A; 2014 Jan; 1324():96-103. PubMed ID: 24296291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model.
    da Silva CG; Collins CH; Lesellier E; West C
    J Chromatogr A; 2013 Nov; 1315():176-87. PubMed ID: 24079548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of molecular interactions on retention and selectivity in reversed-phase liquid chromatography.
    Szepesy L
    J Chromatogr A; 2002 Jun; 960(1-2):69-83. PubMed ID: 12150564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.